THE NATIONAL COUNCIL

Officers and Councillors

Term Expires

Michael Friesen .. President 2005
1979 Piney River Dr., Loveland, CO 80538

Scott Huntington .. Vice-President 2005
34 Summer St., Westerly, RI 02891 silhorgans@aol.com

Stephen Schnurr .. Secretary 2007
St. Paul Catholic Church, Box 1475, Valparaiso, IN 46384 stephen.schnurr@valpo.edu

David M. Barnett (ex officio) ... Treasurer appointed
34 Summer St., Westerly, RI 02891 silhorgans@aol.com

Allison Alcorn-Oppedahl .. Councillor for Archives 2007
Trinity International University, 2065 Half Day Rd., Deerfield, IL 60015 oppedah@iu.edu

Rachelen Lien ... Councillor for Organizational Concerns 2005
1010 Nashville Ave, New Orleans, LA 70115 (504) 899-1139 rachelen@bellsouth.net

Paul R. Marchesano .. Councillor for Education 2007
University of Pennsylvania, Dept of Chemistry, 231 S 34th St, Philadelphia PA 19104

James Johnston .. Councillor for Finance and Development 2007
3636 S. Alameda St. Bldg78, Corpus Christi, TX 78411 (361) 883-0252 johnston@sttcn.com

Sebastian M. Gluck .. Councillor for Research and Publications 2005
(212) 608-5651 Tabah@naga@aol.com

David Dahl ... Councillor for Conventions 2005
857 S. 120th St., Tacoma, WA 98444 (206) 531-4497 dahldpl@pu.edu

William T. Van Pelt (ex officio) Executive Director
OHS, Box 2681, Richmond, VA 23261 (804) 353-9226 melodia@organsociety.org

OHS STAFF

William T. Van Pelt ... Executive Director
Tom Johnson ... Administrative Assistant & Order Processing

THE TRACKER STAFF

Gregory Crowell .. Editor
736 Ethel S.E., Grand Rapids, MI 49506 tracker@organsociety.org

Pamela Gurman .. Layout & Design

THE TRACKER STAFF

American Organ Archives Governing Board Allison Alcorn-Oppedahl, Chair
Trinity International University, 2065 Half Day Rd., Deerfield, IL 60015 oppedah@iu.edu

Biggs Fellowship ... Derek Nichols, Chair
Church of the Holy Comforter, 222 Kenilworth Avenue, Kenilworth, IL 60043
denichols@holycorforter.org

European Organ Tours .. Bruce A. Stevens
American OHS, P.O. Box 2811, Richmond VA 23261 bsstevens@orgsociety.org
Historic Organ Citations ... Stephen Schnurr, Chair
St. Paul Catholic Church, Box 1475, Valparaiso, IN 46384 stephen.schnurr@valpo.edu

Historic Organ Recitals ... Scott Carpenter
806 Madison Ave., Winston-Salem NC 27103 (336) 748-9354 ohhsweb@tripadatr.com

Membership Committee .. Peter Isherwood, Chair
248 Duwart Avenue, Fair Haven, NJ 07704 (732) 741-5043 oboe32@aol.com
Nominating Committee .. J. Michael Barone, Chair
MPR, 45 East 7th St., St. Paul, MN 55101 mbarone@mpr.org

OHS American Organ Archives Fellowship Rollin Smith
313 Fulton St., Westbury NY 11590 rcsv@worldnet.att.net

OHS Pipe Organ Database .. Elizabeth Towne Schmitt, Co-chair
1100 Joyce Rd, Westerly, RI 02891 MO 65401 schmitty@umr.edu

OHS Pipe Organ Database .. Dr. James H. Coo, Co-chair
Box 54003 Birmingham-Southern College, Birmingham, AL 35245 schmitty@umr.edu

COMMITTEES

MEMBERS MAY JOIN ANY NUMBER OF CHAPTERS

<table>
<thead>
<tr>
<th>CHAPTERS FOUNDED</th>
<th>MEMBERSHIP INQUIRIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTRAL NEW YORK</td>
<td>Phil Williams</td>
</tr>
<tr>
<td>1976</td>
<td>Box F</td>
</tr>
<tr>
<td>Chicago Midwest</td>
<td>George Horvath</td>
</tr>
<tr>
<td>1980</td>
<td>4640 Nth Opl Ave N</td>
</tr>
<tr>
<td>Eastern Iowa</td>
<td>Amanda Knoll</td>
</tr>
<tr>
<td>1982</td>
<td>Box 486</td>
</tr>
<tr>
<td>Greater New York</td>
<td>Wendall IA 5277</td>
</tr>
<tr>
<td>1969</td>
<td></td>
</tr>
<tr>
<td>Greater St. Louis</td>
<td>John D. Philipe</td>
</tr>
<tr>
<td>1975</td>
<td>3901 Triple Crown D</td>
</tr>
<tr>
<td>HARMONY SOCIETY</td>
<td>Walt Adkins</td>
</tr>
<tr>
<td>Western PA & Ohio</td>
<td>476 First St.</td>
</tr>
<tr>
<td>1990</td>
<td>Heidelberg PA 15106</td>
</tr>
<tr>
<td>HILBOS</td>
<td>Carolyn Booth</td>
</tr>
<tr>
<td>Washington-Baltimore</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>CLBmuscmkr@aol.com</td>
</tr>
<tr>
<td>MEMPHIS</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
</tr>
<tr>
<td>MICHIGAN</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>MINNESOTA CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>PACIFIC-NORTHWEST</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td></td>
</tr>
<tr>
<td>SOUTHERN STATES</td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td></td>
</tr>
<tr>
<td>NORTH CAROLINA</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
</tr>
<tr>
<td>WISCONSIN</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td></td>
</tr>
</tbody>
</table>

CONVENTIONS

Convention Coordinator Unavailable
Southeastern Mass: The Old Colony
7/12-18, 2005
Central Indiana, July 2007
Joseph G. Roberts
roberts@in.net

North Carolina: The Bellows Signal
7/12-18, 2005
Seattle WA 98111
Kristin Farmer
3800 Flatiron Church Rd.
Winston-Salem NC 27127

Pacific-Northwest
7/12-18, 2005
Seattle WA 98111
Phyllis Frankenstein
1253 Riverton Dr
Mukwonago, WI 53149

HONORARY MEMBERS

*E. Power Biggs; *Joseph E. Blanton; *Alan Laufman; Barbara Owen; Orpha Ochse; John Oganian; *Albert Robinson; *Marlin Vente (* denotes deceased members)

THE TRACKER is published quarterly by the Organ Historical Society Inc., a non-profit educational organization. The Organ Historical Society “application to mail at periodical” pending approval at Richmond, VA 23232-9908. POSTMASTER: Send address changes to OHS, Box 2681, Richmond, VA 23261.

MEMBERSHIP DUES (Including THE TRACKER) Regular members $35 (over age 65 and additional member in a household $29); Under age 25, $19; Contributing members $48; Sustaining $68; Donors $95; Patrons $125; Benefactors $200; Sponsors $500. Institutions and businesses may subscribe with no vote at the same rate. Foreign members and subscribers add $12 for delivery.

BACK ISSUES OF THE TRACKER (Index to Vol 1-33, $7.50) are $5 each or $18 per volume, plus 2.50 S&H. THE TRACKER is indexed (Vols. 37-40 only) with abstracts on CD-ROM and Internet with 400 other music periodicals by the International Index to Music Periodicals mktg@chadsywnyc.com

EDUCATIONAL CORRESPONDENCE may be addressed to the Editor at tracker@organsociety.org.

THE TRACKER does not accept advertising for electronic substitutes for the organ.

THE TRACKER is a registered trademark. Copyright 2005, the Organ Historical Society, Inc. ISSN: 0041-0330.
Organ History, with Strings Attached

Musicologists outside our field commonly regard organ historical studies as insular, if not irrelevant. Fair or not, such criticism needs to be taken seriously because this perception infects students and contributes to a general lack of interest in old organs and their music. Too often, in fact, nearsighted organ historians do overlook connections that could spark wider attention while enlightening our own endeavors.

One blind spot in our vision is the once intimate relationship of organ building to the design and construction of stringed keyboard instruments. By the late nineteenth century industrial specialization had largely divorced these occupations, although even after 1900 a few firms such as Estey and Kimball produced both organs and pianos; but those companies employed separate strategies, technologies, and personnel in the two branches. However, until the second quarter of the nineteenth century (when the introduction of cast iron frames distanced piano construction from the domain of woodworkers) and occasionally later, individual organ builders routinely also made stringed keyboards, if only to fill time between organ commissions (Emilius Nicolai Scherr produced guitars as well). Some builders such as John Geib evidently found piano manufacture more lucrative in the long run and quit the organ business. Others sometimes worked for piano makers, as when Alpheus Babcock, the inventor of a metal frame, employed Thomas Appleton.

The oldest known work of the pioneer German-American organ builder Johann Gottlob Clemen is a spinet dated 1739. It is no coincidence that many seventeenth- and eighteenth-century German clavichords bear inscriptions identifying their makers as “Orgel- und Instrumentenbauer” or “Orgel- und Claviermacher,” Instrument and Clavier both meaning primarily the clavichord, but by extension any stringed keyboard type. This traditional and universal conjunction of crafts, illustrated explicitly in Dom Bedos’s L’art du facteur d’orgues (Paris, 1766–78), should alert us to the insights we can gain from examining the entire output, not just the organs, of such multifaceted figures as Gottfried Silbermann.

For all his accomplishments as an organ builder, Silbermann was arguably more inventive as a Claviermacher. Among other things, he originated the cembal d’amour, a particularly resonant clavichord with double-length strings struck in the middle. More importantly, he took on the challenge of developing Bartolomeo Cristofori’s (or more likely, Giovanni Perti’s) newfangled grand piano, which he first encountered in the early 1730s. As is well known, J. S. Bach eventually acted as Silbermann’s agent in selling one of his pianos, and Bach’s interest in this tonally colorful, dynamically flexible but intimate medium should be enough to engage our attention. The so-called Pantaleon (a versatile hammer dulcimer that Silbermann elaborated for the virtuoso Pantaleon Hebenstreit) further shows the great organbuilder cultivating a fashionable chamber instrument. Listeners as astute as Frederick the Great were enraptured by these new struck-string sounds, which might have influenced trends in pipe voicing in ways we have not yet fully grasped.

The long list of influential organ and clavier makers includes Mozart’s favorite, Johann Andreas Stein, few of whose organs survive. Mozart’s Stein clavichord, dated 1762, now belongs to the Hungarian national museum in Budapest; it shows the refinement of a builder who was by all accounts also a sensitive performer. Stein’s remarkable combination organ and grand piano (clavecin organizé), built about 1781 and currently on loan from Göteborg to The Hague’s municipal museum, offers rare insight to his tonal goals, as least as concerns chamber music, but its organ apparatus awaits thorough scrutiny.

“Organized” pianos by builders active from Russia to Mexico testify to the once widespread appeal and commercial viability of these hybrids. The Puerto Rican artist and organist José Campeche depicted one in a portrait he painted in San Juan about 1792. In 1808 the travel writer Johann Friedrich Reichardt encountered one in the home of a Viennese civil servant, whose wife, “a very simple woman...sat right down of her own accord at her organ-fortepiano to play something for me.” In combination instruments of this kind, the study of string scalings can shed light on related pipe scales, while pipe measurements can elucidate questions of piano temperament. Issues of balance, change of timbres across the compass, tuning stability, and repertoire also arise. Among related matters just now receiving organ historians’ attention, the oldest known European free reeds of any kind survive in a magnificent organized piano built in St. Petersburg by Johann Gabrath in 1783; it is now in the palace of Paul I at Pavlovsk. This novel rank, divided into bass (called Fagot) and treble (Rohr), stands by itself in a tiny swell box with horizontally sliding, perforated panels rather
than louvers. Free reeds like these originated in efforts to synthesize human speech, and Gabrahn must have been among the first to adapt this experimental technology to purely musical purposes. Whether he intended the reeds to play simultaneously with the flue pipes and piano or not remains an open question, but this rank marks an important step toward greater tonal variety and dynamic expressivity—the same goals addressed by the piano.

A more ordinary organized piano produced in 1786 by the London firm of Longman & Broderip, now in The Metropolitan Museum of Art, incorporates pipework bearing the signature of Eaton Pether, the only record known to me of this member of the Pether family. Longman & Broderip also employed John Geib before he emigrated to New York, and pipework of his likely survives unrecognized in similar instruments from this firm.

A much earlier claviorganum in The Metropolitan Museum incorporates one of the oldest organs in the Western hemisphere. Its tiny, removable spinet is dated 1598 and signed by Lorenz Hauslaib of Nuremberg, while the organ component has been attributed to his contemporary, Stadtorgelmacher Steffan Cuntz. The tonal palette and musical functions of such quiet but elegant Renaissance playthings deserve exploration by means of a working replica. Another organ-harpsichord also awaits study in the same museum; the harpsichord, made by Hermann Willenbrock of Hanover in 1712, has been altered beyond salvation, but the organ parts might be relatively intact. Said to have been owned by the elector of Hanover, later George I of England, this imposing instrument might have been known to Handel.

Leaving aside hints of organbuilding by major stringed keyboard makers from Hans Ruckers to Henry Steinway and turning to an issue more germane to the OHS, the frustratingly incomplete record of David Tannenberg’s work has had one big gap filled by the recent identification of his only known stringed keyboard instrument, which happens also to be his oldest extant instrument of any kind and the only one with his signature, as well as the earliest dated American clavichord. A hint of its significance lies in one listener’s comment after Peter Sykes’s inaugural recital on Tannenberg’s newly restored Home Moravian Church organ, likening it to a “clavichord with pipes.”

While outwardly unremarkable, on closer inspection Tannenberg’s clavichord reveals him to have been experimenting with musical acoustics while still nominally working under direction of his mentor, Johann Gottlob Clemm. The instrument’s remarkably thin, presumably resonant bottom board, elevated above a table top by little support blocks, is relatively unnumbered by its diagonal brace, balance rail, back rail, and wrest-plank, all of which are supported above the bottom. A dowel penetrating the bottom touching the underside of the soundboard to the right of the bridge, while a single rib that would normally pass under the bridge is here positioned entirely to the left of it, roughly parallel to its main axis. The rib and dowel thus flanking the bridge recall the bass bar and soundpost arrangement of a violin. Furthermore, the clavichord has two soundholes rather than the usual one, and a flat-topped, double-pinned bridge, a design normally associated with later pianos, including Silbermann’s.

It seems that Tannenberg aimed to enhance this clavichord’s sound in an unprecedented way. At least nothing resembling the rib and dowel arrangement has been noted in any other clavichord, including two closely related ones in the Smithsonian’s National Museum of American History and the Schubert Club collection in St. Paul, Minnesota, both perhaps built under Tannenberg’s supervision. If Tannenberg was already a visionary at this early stage of his career, we might wonder whether his goals in organ tone (not to be confused with his stallions) were also largely personal and innovative, rather than merely derived from particular German prototypes. His organs have been variously described as representing south, east, or central German styles, and even a connection to Silbermann through Clemm has been dubious asserted, although a direct, audible debt to any of these supposed influences has not been convincingly demonstrated. More likely, his eclectic taste was formed mainly in America by Clemm, by Georg Andreas Sorge’s treatise on pipe scaling, by singing and playing the violin in the Lititz collegium musicum, and by listening carefully to lots of music on all kinds of instruments, including trombones, woodwinds, stringed key-boards, and English and German organs.

Just as suggestive as this clavichord’s unique structure, calculation of its fretted semitone ratios shows that it was far from equally tempered. In 1761 Tannenberg had not yet received Sorge’s treatise on pipe scaling, by singing and playing the violin in the Lititz collegium musicum, and by listening carefully to lots of music on all kinds of instruments, including trombones, woodwinds, stringed key-boards, and English and German organs.

Just as suggestive as this clavichord’s unique structure, calculation of its fretted semitone ratios shows that it was far from equally tempered. In 1761 Tannenberg had not yet received Sorge’s treatise on pipe scaling, by singing and playing the violin in the Lititz collegium musicum, and by listening carefully to lots of music on all kinds of instruments, including trombones, woodwinds, stringed key-boards, and English and German organs.

Just as suggestive as this clavichord’s unique structure, calculation of its fretted semitone ratios shows that it was far from equally tempered. In 1761 Tannenberg had not yet received Sorge’s treatise on pipe scaling, by singing and playing the violin in the Lititz collegium musicum, and by listening carefully to lots of music on all kinds of instruments, including trombones, woodwinds, stringed key-boards, and English and German organs.
measures just twenty-six English inches, the same as in Tannenberg’s organ of c.1776, also in the Moravian Historical Society. Deviations from this norm in other keyboards attributed to Tannenberg will demand explanation. However, the keys of these two instruments differ markedly in shape, materials, and decoration. Do these stylistic differences reflect changing taste or the organ’s more public function, or might the organ keyboard have been made by someone other than Tannenberg?

Questions like these arising from Tannenberg’s clavichord should help refine our investigation of his organs and enhance our understanding of his accomplishments. Further implications of the clavichord’s discovery for American music history remain to be pursued, but at least this case shows how examining stringed keyboards can refine our view of the organbuilder’s art. One benefit of studying such small but sophisticated instruments is a sharpening of visual perception, since adequately describing them requires a deeper level of detail than has been customary in describing American organs. Taylor & Boody’s outstanding record of Tannenberg’s Home Church organ puts most previous documentation of American organs to shame.

As our frame of reference widens and our vision becomes more acute, musicologists and their students as well as scholars in related fields should take organ history more seriously. Appreciation of old organs can only benefit from this advance. 26

Laurence Libin is Research Curator at The Metropolitan Museum of Art, and a member of the OHS American Archives and Publications Governing Boards.
Dear Editor:

I read with great interest the article [by Orpha Ochse] in a recent issue of The Tracker about the organ at Van Nuys High School [The Tracker, vol. 48, no. 4 (Fall 2004): 7–13]. I enjoyed reading about the early history of the organ, the organbuilder, the area (as it relates to the organ and organbuilder), and seeing all of those pictures. Although I have never had the chance to meet Jim Lewis in person, I still hope to have the opportunity to view his fantastic collection of photographs. However, I was surprised to read so much misinformation, especially with regards to the organ’s recent history. I hope to set the record straight in this letter.

The organ at Van Nuys High School was one of three organs by the Johnston/California Organ Company. Based upon having seen California Organ Company nameplates on the consoles from Van Nuys and Reseda Elementary, I believe that such nameplates did appear on the consoles of the organs constructed for schools in the area (San Fernando Valley) at that time. The other two organs [built by the Johnston/California Organ Company] were constructed for Reseda Elementary School and Owensmouth High School. (Owensmouth High School and the city of Owensmouth were later renamed Canoga Park.) The story that I was told by several people at the different schools over the years was that the three organs in the San Fernando Valley schools were donated to the schools by the company in appreciation for the education that [the schools] were providing to their children. All three organs were exactly the same, specification-wise, so it is easy to discern an accurate specification. It is as follows:

<table>
<thead>
<tr>
<th>Great</th>
<th>16' metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Open Diapason</td>
<td>16'</td>
</tr>
<tr>
<td>First Open Diapason</td>
<td>8'</td>
</tr>
<tr>
<td>Second Open Diapason</td>
<td>8'</td>
</tr>
<tr>
<td>Melodia</td>
<td>8'</td>
</tr>
<tr>
<td>Swell Lieblich Gedackt</td>
<td>16'</td>
</tr>
<tr>
<td>Open Diapason</td>
<td>8'</td>
</tr>
<tr>
<td>Stopped Diapason</td>
<td>8'</td>
</tr>
<tr>
<td>Salicional</td>
<td>8'</td>
</tr>
<tr>
<td>Aaelone</td>
<td>8'</td>
</tr>
<tr>
<td>Voix Celeste</td>
<td>8'</td>
</tr>
<tr>
<td>Harmonic Flute</td>
<td>4'</td>
</tr>
<tr>
<td>Piccolo</td>
<td>2'</td>
</tr>
<tr>
<td>Cornopean</td>
<td>8'</td>
</tr>
<tr>
<td>Oboe</td>
<td>8'</td>
</tr>
<tr>
<td>Vox Humana</td>
<td>8'</td>
</tr>
<tr>
<td>Pedal Octaves</td>
<td></td>
</tr>
<tr>
<td>Pedal</td>
<td></td>
</tr>
<tr>
<td>Swell to Pedal</td>
<td></td>
</tr>
<tr>
<td>Swell to Great 16'</td>
<td></td>
</tr>
<tr>
<td>Swell to Great 8'</td>
<td></td>
</tr>
<tr>
<td>Swell to Great 4'</td>
<td></td>
</tr>
<tr>
<td>Swell to Swell 16'</td>
<td></td>
</tr>
<tr>
<td>Swell to Swell 4'</td>
<td></td>
</tr>
<tr>
<td>Great to Great 4'</td>
<td></td>
</tr>
<tr>
<td>Great to Swell 4'</td>
<td></td>
</tr>
<tr>
<td>Great to Pedal</td>
<td></td>
</tr>
</tbody>
</table>

Our firm has been involved with the Van Nuys High School organ since we were first asked to look at the instrument and submit an evaluation/proposal to the Los Angeles Unified School District (LAUSD: the agency which owns the organ and school building, and also the controlling and management agency for the school) in January of 1978. At that point I was myself a senior in High School. The console had recently been replaced (many of the original console parts were still at the school) with a “new” (used) console. From recollection (and I could be wrong), I do not believe that it was the Schantz console that was installed at the time of the Northridge earthquake. The reason that I believe this is that the Schantz console came from the organ that was located at All Saints by-the-Sea Episcopal Church in Montecito, California. The church had purchased and installed a new organ by Robert Turner in the mid-1980s, at which point the Schantz console would have become available. In 1978 the high school organ was in less than stellar condition, with many dead notes and several missing pipes. Most of the dead notes were caused by easily repairable electrical problems, and the missing pipes were mostly small treble pipes. Our proposal was not accepted. Over the next twelve years, the school organs were maintained by a variety of personnel in the area. Our firm was constructing a new console for a nearby church, whose organ committee chairperson was a member of the LAUSD’s musical instrument repair department (as a piano technician). One day, when we were working on the organ at the church, we were talking about the organs within the district, and he mentioned that the service contract was coming up for renewal, and that I should submit a request to be included in the bidding process. We included a bid, and were the winning contractor. We were awarded the maintenance contract on 15 August 1990. At that point the organ was in basically the same condition that it had been when I had seen it twelve years earlier. It had been maintained, but still possessed numerous problems. I cannot see that it was restored in the 1970s as stated in the article (“By the 1970s the organ was badly in need of repair, and once more it was restored to playing condition”). In the thirty-nine months prior to the earthquake, our firm did maintenance on the organ, and was able to bring it up to reasonable playing condition. I will be the first to admit that the organ was not perfect by any stretch of the imagination, but it was in reasonable playing condition, and in good tune. Since I am sure that the author of the article did not have first-hand knowledge of the instrument prior to the earthquake or any [other] source that would have had reasonable working knowledge [of the organ], stating that the organ had received “a general lack of maintenance” is, at the least, pure speculation. I frankly am surprised, and, in fact, insulted that someone who did not know the instrument until ex post facto would dare to draw such a conclusion that could bring harm and offend the organ technician who was so employed at the time of the earthquake. Also, prior to the Northridge earthquake, there was no pipework chat was damaged by any contractors. I never saw any evidence of damage caused by construction workers prior to the last site inspection, so it would be assumed that this occurred between July 2000 and January 2001.

After the Northridge earthquake occurred on 17 January 1994, we were asked by the LAUSD (as the current organ technicians) to perform an inspection of the pipe organs in the LAUSD (Van Nuys High School, Reseda Elementary School, Canoga Park High School, and Hollywood High School), to list the damage that the organs had sustained, and to submit an approximate cost for the repairs. This was done for Van Nuys High School in our letter of 2 February 1994. We were then asked to submit a more detailed inspection report to the area director of the LAUSD. This was done on 18 February 1994. Approximately four years went by, and the LAUSD had assembled a department (Earthquake Recovery Program) to handle the enormous task of seeing all of the earthquake damage repaired. This was not only to include all of the organs, but buildings as well (including the districts general administration building). I had met with members of this
department several times to discuss the organs. Included in some of those meetings were members of FEMA (Federal Emergency Management Agency) and the California OEM (Office of Emergency Management). We were asked to provide a break-down of each item of the renovation, approximate number of hours (with cost per hour), plus materials and any other expenses. This was faxed to the LAUSD on 9 September 1998, and a hard copy was mailed a couple of days later to them, with copies to FEMA and OEM. After this long wait, it looked as if the LAUSD was going to be funded for the organ projects. [The writer describes the lengthy bidding process that ensued, and his ultimate decision not to submit a bid for the project.] The project was ultimately awarded to the Datum Group, Inc., of Glendale, California, with Austin acting as a sub-contractor.

Having worked on the Van Nuys organ, the Reseda organ, and other organs of the same manufacture in the area, I can be absolutely positive that the organ was never on 10" of wind, but was on 6". At a point prior to 1978, a Spencer blower had been installed that probably produced more wind pressure than the original "Green Box" Kinetic blower that the organ would have had. No wonder that the Swell division produces a sound pressure of 117 decibels! It is also interesting to note why Austin needed to add an extension octave to the 16" [Lieblich] Gedackt in the Swell: as of the time of my last viewing of the organ, there was still in the organ a complete, undamaged and independent 16' Gedackt! I wonder what happened to this stop. The organ's chimes were a replacement, as the original set were of good quality and electro-pneumatically operated. From my notes and my remembrance of the organ, the two string stops in the Swell were not damaged beyond repair, so unless something happened to them after I had seen the organ, I cannot see why these string stops needed to be replaced.

The other two school organs were also damaged and repaired. The organ at Canoga Park High School had been rebuilt in the early 1970s by one of the school teachers who dabbled in organs. The chests were replaced with Sugar Pine pitman chests, most of the reservoirs were replaced (of actually really good quality), and Klann electric relays and switches ran the unit stops. Another console by an unknown builder was installed. After the earthquake, the pipework was repaired, the chests, reservoirs, etc., were rebuilt, the organ was additionally braced, the console (along with the electric relays and switches) was rebuilt with new solid-state equipment, and the original blower was replaced with a new Laukhuff blower. It is interesting to note that the grill in front of the chambers is painted a dark orange color (and was again repainted at the time of the earthquake rebuild). [This paint layer] is covering absolutely beautiful and extremely rare Cuban mahogany! The organ at Reseda Elementary School, located less than a mile from the epicenter of the earthquake, was the most severely damaged of all the organs. With the exception of the console, it was in absolutely original condition prior to the earthquake. The organ was restored back to the way it was in 1916 (with the exception of the console), and some additional bracing [was added] to help it survive better in future earthquakes. The original console had been replaced in the late 1980s with what I could only describe as an electronic spinet console that was absolutely a piece of junk. According to a copy of an undated newspaper article that I possess, the "good rebuilt console" cost the school $2,700.00. Shortly after this fiasco, the person who did this (whose grandfather and father had both been in the organ trade in Los Angeles)
left the organ trade, and became a baker! It is interesting to note that the spinet console was replaced by a used Austin console. This console had been purchased new by Richard E. Muench, a local (and now deceased) organbuilder for Rosewood United Methodist Church, Los Angeles, California, to replace the console of the church’s small, two-manual Kimball (which I believe was original to the church). The organ had developed numerous problems, and they decided to replace the pipe organ with an electronic substitute. The Austin console was available, and was purchased by the district and installed at Reseda Elementary School.

In conclusion, knowing Austin’s reputation for quality, I am sure that the organ was rebuilt well. Though I have yet to hear, see, or play the instrument, I do look forward to that day.

Sincerely,

Michael R. Williamson
Williamson-Warne & Associates
Pipe Organbuilders,
Campanological Technicians
Hollywood, California

Orpha Ochse responds:

Mr. Williamson’s letter raises various questions. I will respond to a few of them. In regard to his second paragraph, the Van Nuys High School organ was the first school organ in Southern California. A second and third were installed in high schools within a year. A report in the Van Nuys News (23 April 1915, p. 1) notes that the Owensmouth district trustees visited the Van Nuys High School and the Johnston organ factory: “They were much impressed with the organ being erected in the auditorium here, and, before leaving, contracted for one to be placed in their building.” Given the April 1915 date of this report, the Van Nuys organ was probably built while the company was still named Johnston, but the name had changed to California Organ Company by the time the other two high school organs were completed. My best estimate is that the company changed hands sometime between August 1915 and February 1916. The Redondo Beach High School organ was dedicated 11 April 1916 [see Venice Evening Vanguard, 10 April 1916]. I have found no report of the time stating that these three organs had identical specifications, although, of course, that is a possibility.

Evidence does not suggest that the three high school organs were donated by the organ company. A letter dated 24 February 1916 by Mr. Whitson, a trustee of Van Nuys High School, states: “As one of the Trustees at the time will say that we were skeptical at the time as to what the tax payers would think of our spending so large an amount of money [for the organ], but nothing was said and since that time we have heard only favorable comments from every one, including the Board of Education of Los Angeles.”

Regarding the restoration in the 1970s, the history of the Los Angeles Theatre Organ Society notes that on 18 April 1972 organist Randy Sauls played a Rodgers electronic instrument in the Van Nuys High School auditorium to raise funds for the restoration of the school pipe organ. The rebuild was completed, and on 4 June 1977 Gaylord Carter played the re-dedication program [see www.latos.org/History%20Files/history53.htm].

Conflicting evidence clouds the question of the wind pressure. As I noted, Alan McNeely estimated a pressure of ten inches. The Spencer blower was rated to put out fifteen-inch wind, but it had been modified in the 1950s to put out ten inches. Meanwhile, the number of springs on the reservoirs suggested three-inch wind, but on the Austin voicing machines the pipes seemed to speak best on about four-inch wind. Take your pick! Considering a variety of factors, including a tonal egress problem, Austin chose eight inches (correspondence from Austin Organs, Inc., 20 November 2001).
Dear Editor,

I hope it is useful to point out related to "A Tale of Five Organs" by Bruce Gardzina [The Tracker vol. 49, no. 1 (Winter 2005): 41–45] and specifically First Unitarian Church, Jamaica Plain, Massachusetts. The stoplist is noted as found on the console, but apparently the annotations were reprinted from the 2000 Handbook, which is likewise in error.

- The 21 facade pipes from the Op. Diapason on the Great are of zinc, and only the interior pipes are of common metal.
- The Trumpet located in the Great division should read: 56 pipes; 49 reeds, 7 flue trebles.
- The Ch. Celestina is not the strength of the Bell Gamba. It is a Dulciana in construction, tone and volume.
- The "Plugged hole (for stop shank)" listed with the Choir stops, should be listed with the Swell stops.
- Add "Empty hole (for stop shank)," which should appear listed with the Choir stops.

The description of the facade pipes should read that they were originally stenciled in a blue and gold pattern, and subsequently repainted in gold by the early 1900s.

Scot L. Huntington
Stonington, CT

Frank Olney, AIA
Johnson Olney Associates, Inc.
Architects
Boston, Massachusetts

Bruce Gardzina responds:
Although sources obtained from the church indeed stated that the architect William Ralph Emerson was the son of the poet Ralph Waldo Emerson, I have since found references to William as a brother, nephew, and a distant relative to Ralph. While the exact familial relationship of the two men remains unclear, a perceived connection between the architect and the poet clearly survived at least in the lore of First Unitarian Church, and served to aggrandize the 1874 remodeling of the sanctuary.

Dear Editor,

I would like to make several corrections to the stoplist that appeared with my article on the E. & G.G. Hook organ of the First Baptist Church, Jamaica Plain, Massachusetts. The stoplist is noted as found on the console, but apparently the annotations were reprinted from the 2000 Handbook, which is likewise in error.

- The 21 facade pipes from the Op. Diapason on the Great are of zinc, and only the interior pipes are of common metal.
- The Trumpet located in the Great division should read: 56 pipes; 49 reeds, 7 flue trebles.
- The Ch. Celestina is not the strength of the Bell Gamba. It is a Dulciana in construction, tone and volume.
- The “Plugged hole (for stop shank)” listed with the Choir stops, should be listed with the Swell stops.
- Add “Empty hole (for stop shank),” which should appear listed with the Choir stops.

The description of the facade pipes should read that they were originally stenciled in a blue and gold pattern, and subsequently repainted in gold by the early 1900s.

Scot L. Huntington
Stonington, CT
Harrison’s Forgotten American Classic:
Aeolian-Skinner's Opus 953 for Strong Auditorium at the University of Rochester, Rochester, New York

BY JONATHAN ORTLOFF

Rochester has long been a city of great wealth and innovation. It was here that George Eastman established the Eastman Kodak Company, and, with his invention of flexible film in the late nineteenth century, brought about a revolution in photography, making him a fortune. In 1949 the Haloid Xerox Corporation revolutionized printing technology with its Model A copier, the first dry process document reproducing machine. Bausch and Lomb, the third partner in Rochester’s corporate trinity, revolutionized optics in the same way Eastman had revolutionized photography.

George Eastman had a profound sense of philanthropic obligation to his community; he had a vision for a city immersed in culture, and used his great fortune to that end. In 1921, at a cost of $3 million, he gave Rochester the Eastman Theatre, the facade of which was inscribed “For the Enrichment of Community Life.” Another $2 million of Eastman’s money established the music school that bears his name, which was also the first professional school of the University of Rochester. Particularly fond of organ music, Eastman installed a sixty-rank Aeolian pipe organ in his home, an instrument that soon grew to 129 ranks controlled by a four-manual console. The Eastman Theatre contained the largest theatre pipe organ ever built, a 135-rank Austin, and Eastman made sure the organ department of the Eastman School of Music was outfitted with the best instruments money could buy. It seems only fitting that a community so immersed in innovation and culture, and particularly music, should be home to a watershed organ built by one of the great innovators in twentieth-century organ building.

The name of G. Donald Harrison is closely associated with the organ reform movement of the 1930s and 1940s in North America. Harrison is famous for his American Classic tonal designs, which became the staple of organbuilders in the mid-twentieth century. Three organs are inevitably associated with the early forays into his American Classic design: Saint John’s Chapel at the Groton School in Groton, Massachusetts; The Church of the Advent in Boston; and St. Mark’s Episcopal Church in Philadelphia. These organs’ tonal designs are typically described as groundbreaking, pioneering, or revolutionary; special note is often made of the use of modified French reeds, independent Pedal divisions, and unenclosed Positiv departments. They are unquestionably important instruments and deserve to be studied and hailed as exemplary. But there is another important instrument that, according to Orpha Ochse, “showed even more clearly the direction of the future,” an instrument that remains virtually absent from these discussions: Aeolian-Skinner’s Opus 953 for Strong Auditorium at the University of Rochester. This was Harrison's
fourth American Classic organ, finished only three months after the St. Mark’s organ. This undervalued and understudied instrument is a seminal example of Harrison’s work that displays his new thoughts on tonal design.

This organ’s history cannot be discussed without first discussing the history of its home school. The University of Rochester was founded in 1850 on a small campus near downtown Rochester. Ground was broken in 1927 for a new campus along the Genesee River, on land purchased by George Eastman. The River Campus, as it came to be called, was a gloriously green and spacious setting, with beautiful, classically-inspired brick buildings. The campus was adorned with the stunning Rush Rhees Library, dormitories, academic buildings, and an elegant auditorium.

The auditorium building was donated by Hattie M. Strong in memory of her husband, Henry Alvah Strong (the first president of Eastman Kodak), and duly named Strong Auditorium. As early as 1920, plans for the building were in the works, and in a letter dated 3 January of that year to university president Rush Rhees, Mrs. Strong gave her support to the new campus: “I hereby pledge to the University of Rochester the sum of two hundred thousand dollars ($200,000) for the purpose of erecting an assembly hall on the campus of the University, in memory of my beloved husband, Henry Alvah Strong.” Henry had died the year before, in 1919. The auditorium was designed to seat 990 in the orchestra and balcony, and incorporated two chambers on either side of the proscenium for a pipe organ.

In 1928 it became apparent that the initial funds would not be sufficient to complete the project, and Mrs. Strong was called upon to donate more money. Upon hearing of George Eastman’s intention to match whatever gift she gave, Mrs. Strong pledged an additional $45,000. Eastman wrote to Rhees on 28 October 1928, saying that the combined additional $90,000 “will build the building. I would rather not have my name appear.”

Unfortunately, Harold Gleason’s papers do not survive either in the university’s or the Eastman School’s archives, so any correspondence he had with different organbuilders about building the Strong organ is undocumented. The only mention of another builder besides Aeolian-Skinner is made in a letter dated 2 December 1936 from Gleason to Rhees in which Gleason writes, “The letter from the Wurlitzer Co. has been answered.” Aeolian-Skinner’s name was mentioned as early as 19 October 1936. In a letter to Dr. Rhees, Mrs. Strong stated, “I realize that the building does need an organ, and think the Skinner’s price reasonable.”

The contract for $25,000 between the University of Rochester and the Aeolian-Skinner Company was signed on 8 December 1936, with treasurer Raymond L. Thompson representing the university, and vice president William Zeuch representing Aeolian-Skinner. Harold Gleason and Ruth Hoaurer served as witnesses. According to the original contract, the organ was to have seventy-three speaking stops on four manuals and pedal, representing 5,049 pipes in eighty-four ranks. Aeolian-Skinner sent the first invoice on 9 December 1936, and Mrs. Strong sent her check for $25,000 on 17 January of the following year.

Almost as surprising as the organ’s tonal design was its price. In her 19 October
This data is not a consideration or terms of this contract, but is given in good faith and full expectation of prompt delivery, subject, however, to delays from fires, strikes or causes beyond the control of the Builder and especially subject to delays from freight embargoes or other interferences.

3. It is agreed that the amount of any State or Federal Tax levied on the manufacture or sale of said organ or in any other manner levied on the transaction set forth in this agreement, shall be added to the purchase price herein above set forth, and paid by the Purchaser.

4. It is understood and agreed that the materials and labor entering into the organ hereinabove constructed for are to be procured by the Builder in the State of Massachusetts, and said organ is to be constructed by the Builder in the State of Massachusetts from which State it is to be transported in interstate commerce to the State of NEW YORK where it is to be installed by the Builder as hereinabove set forth.

5. The Purchaser agrees that when the Builder is ready to proceed with the installation of the organ, the Purchaser will see that the organ is in a suitable condition for the purpose of transferring it. The Purchaser agrees to pay the cost of such transfer, or to arrange for such transfer in a proper place at his own expense, provided of course that the organ builder does not complete said organ at the factory before the proper time for shipment, in accordance with contract date of completion.

6. If the building is not in proper condition for the organ to be erected when the organ is ready for shipment and it becomes necessary to place the organ in storage to be held until the building is ready for installation, the Purchaser agrees to pay the cost of such storage, or to arrange for such storage in a proper place at his own expense.

7. It is mutually agreed that, in view of the fact that the presence of rubbish and dust, especially from plaster, and of noise or disturbance caused by workmen, when an organ is being erected causes not only immediate but future troubles in the functioning of any organ, the building in which the organ herein referred to is to be erected shall not be considered ready for the erection of said organ until the organ chambers and the adjacent parts of the building are entirely free from rubbish and dust. In other words, it is understood that the organ erection shall not be started until any other workmen liable to create rubbish, dust or disturbance shall be out of the way entirely, and furthermore, if after the organ erection comes to a standstill, workmen are interrupted by other workmen creating rubbish and dust, or making any disturbance, the losses in time and expense caused by the lack of proper conditions for organ erection shall be made good at the expense of the Purchaser.

8. The Purchaser agrees to inform the Builder as to where the organ and console are to be located, and the Purchaser agrees to provide a condition of quiet within the building for the proper tone regulation of the organ, and shall reimburse the Builder for additional cost due to such changes or obstructions.

9. The Purchaser, in consideration of the agreement herein of the Builder, hereby requests the Builder to construct and erect said organ and agrees to purchase the same and to pay therefor the sum of:

10. Final payment is, in any event, immediately due upon use of the organ in service or in other public manner. Interest to be paid at the rate of six (6) per cent per annum from the date of such use upon any balance remaining unpaid upon completion of thirty (30) days.

11. Final payment shall not be withheld on account of minor adjustments for which the Builder is liable under its warranty.

12. It is mutually agreed that the title to and ownership of said organ shall be and remain in the Builder until the contract price as hereinafter stated and all promissory notes or other evidences of indebtedness and renewals therefore have been paid in full, interest at the rate of six (6) per centum per annum from the date of such use upon any balance remaining unpaid upon completion of thirty (30) days.

13. It is mutually agreed and agreed that the delivery and acceptance of promissory notes or other evidences of indebtedness shall not be considered payment until the full amount of the same and all renewals thereof shall have been paid in full interest.

14. All verbal agreements and understandings are merged in this contract and the specifications and details of construction attached hereto which comprise the entire contract, and no change, alteration or modification made verbally or in any other way, will be binding upon the Builder, unless the same be made in writing signed by an executive officer of the said Builder.

This contract is made the ______ day of December, ______ 1936.

HARRISON'S FORGOTTEN AMERICAN CLASSIC

letter to Hessie in 1936, Mrs. Strong told him, “I do not feel that I could possibly add more than $25,000 to the amount I have already put in it.” There is no evidence of the school’s seeking to raise more funds, and Mrs. Strong’s mention in the same letter of “Skinner’s price” suggests that Aeolian-Skinner quoted this price to match the donated amount. Regardless, the price was still far below that which would have been expected for an organ of that size in 1936. By comparison, the Skinner in Kilbourn Hall at the Eastman School, installed fifteen years earlier, was of comparable size, and most likely cost close to $50,000. In a letter to Harold Gleason of 4 May 1937, Aeolian-Skinner treasurer George Caitlin wrote of a dispute of a few hundred dollars in freight charges, adding, “If the price at which the organ was figured was such as to enable us to make any profit, we would not say a word about this freight, but unfortunately for us that is not the case.” These facts suggest that Aeolian-Skinner wanted the contract badly enough that they were willing to sustain a substantial loss.

The stoplist in the contract called for another in the series of radical new Aeolian-Skinner organs. Gleason described the design in The Campus, the university’s student newspaper, on 19 February 1937: “It is of the newest design and most complete construction.” Another article on 30 April quoted Gleason as saying, “This organ realizes an ideal in modern organ construction in that it restores the clarity, richness, and grandeur of the Baroque organ of the 17th and 18th centuries, and combines with these qualities the tonal resources of the best modern instrument.” As originally designed, the organ had essentially four manual divisions (Choir, Great, Swell, Rück-Positiv); the Solo Organ was to have but one stop, a Trompete Harmonique, enclosed in the Choir. From the contract, it is not clear on which manual the Rück-Positiv division made its home. According to the contract specifications, it was to be duplexed to the Great. However,
in the coupler listing, there were four couplers (Rück-Positiv to Great, Choir, Swell; Rück-Positiv on Solo) controlling the division. In addition, what appears to be a keycheek switch was included on the Choir: Choir on/Rück-Positiv off; Rück-Positiv on/Choir off; Both on. Gleason handwrote a duplicate switch for the Great manual and made several additional handwritten addenda to the contract, including Swell to Solo and Great to Solo couplers. Skinner had not provided any divisional pistons for the fourth manual, and Gleason added eleven pistons (0–10): “Solo (For Ch. Rück Pos).” In addition, he added three vents similar to those he designed for the Kilbourn Hall Skinner in 1920.

Again, there is little documentation about the organ’s installation, but the *Campus* article of 30 April 1937 mentioned that “installation was begun last January.” It is also not clear when several major changes were made to the specifications. The specifications printed in *The Diapason* on 1 October 1937, which correspond to the final installation, show several differences to those in the signed contract. For example, in the contract specifications, the Great flute chorus lacked the 2’ Blockflöte, which was ultimately installed. The 8’ Gemshorn was also a later addition. The Swell, too, was altered: the original 8’ Stopped Diapason was changed to an 8’ Stopped Flute, and the 8’ Flûte Harmonique was deleted altogether. The names of the 8’ Geigen, 4’ Octave, 2’ Geigen Flautino, 16’ Bombarde, and 8’ Trompette were changed to Geigen Principal, Octave, Flageolet, Double Trumpet, and Trumpet, respectively; the latter change is significant, as it may reflect the switch from reeds with modified Cavailé-Coll-type shallots to those of English design, as were installed.

Two ranks were added and one deleted from the Choir. True to his scheme of color mutations in the Choir of the Kilbourn Hall instrument, Gleason added a Nazard and Tierce to the division, and the 8’ Orchestral Oboe was moved to the Solo. The Rück-Positiv (Harrison’s largest to date)
lost one rank, the 8’ Gemshorn, to the Great. The single-stop Solo division was augmented by the Orchestral Oboe and a 4’ Clarion, all on seven-inch wind pressure. With its increased size, the Solo chest was chamber. A separate expression engine was Great. The single-stop Solo division was mostly unchanged except for the nomenclature of some stops: the unit reed of 16’ Bombarde and 8’ First Trompette was anglicized to Trombone and Trumpet, and the 8’ Principal was changed to 8’ Octave.

Perhaps the most interesting modification, however, was the change of the independent 8’ Second Trompette to an 8’ Bassoon. This narrow-scaled stop with inverted, conical resonators of zinc was a feature not included on any other American Classic organ built by Harrison. Without proper documentation and further research, its intended purpose can only be presumed.

On the Rück-Positiv, Harrison’s third Krummhorn stood out as an unusual stop for its day. Unlike later Aeolian-Skinner Krumhorns, which are narrow-scaled cylindrical stops of pipe metal, the resonators are of brass, with large spotted-metal bells.

The four-manual console differed somewhat from the contract specifica-
DETAILS OF CONSTRUCTION

The builder warrants the action and construction in every particular, and agrees to make good any defects in materials and workmanship which may appear within five years.

Action to be electro pneumatic.

Casing of console to be of native oak, or of any other native wood of equal value; of simple design to harmonize with the period of the architecture of the building.

Adjustable

An organist's bench of same material as console casing.

All bases of the larger winded stops on separate chests.

The organ builder is to furnish and install an electric blowing plant, consisting of a motor, blower, remote control self-starter where necessary, and generator for action current, all of ample size to meet any legitimate demand which may be made thereon by the instrument, according to the specifications.

The purchaser shall furnish a suitable foundation for the motor and blower, connect the motor and starting switch with the power current, install wiring from the console to the self-starter and connect same; do all cutting of floors, partitions, etc., and the running of conduits where required and wind conductors from the blower to the console and all organ chambers which may be necessary; and shall prepare the organ chamber in accordance with plans which shall be furnished by the organ builder.

The organ is to be erected in the building, tone regulated, tuned and left ready for use. Freight and cartage to be paid by purchaser.

No organ case or front display pipe work is included.

The organ builder will furnish and install all the wind trunking.

The purchaser agrees to connect motor and starting switch with power current, install wiring and connect same; do all cutting of floors, partitions, etc., and running of conduits where required, including lights for console and organ chambers - for which the organ builder agrees to pay the purchaser a sum not to exceed $2000.00.

It is understood that the price of the organ is to include everything necessary for the installation and that any additional charges will be met by the builder.

The organ to be ready for acceptance by Mr. Harold Gleason not later than May 16, 1937.

The completed organ to be satisfactory to Mr. Harold Gleason.

Instead, three Solo divisionals were installed (0–2) left of center on the keyslip. Five pistons for the Rück-Positiv (0–4) were placed to the very right of the keyslip. The Rück-Positiv divisionals were also duplicated in the same position under the Choir manual. Keycheek switches on the Great and Choir manuals duplexed the Rück-Positiv divisionals to the manual divisionals, and Rück-Positiv to Pedal reversible coupler pistons were installed on the Great and Choir manuals, to the left of the Great/Choir to Pedal pistons. The three ventil pistons (16' manuals Stops off, 16' Couplers off, and 16' Pedal Stops off) were located at the left of the Solo keyslip, and were duplicated on toe pedals. With ten general and fifty-five total divisional pistons controlled by a capture combination system, there was no room in the console for the complex machine needed to set and store combinations, and thus the capture machine was placed in the blower room.

The organ was first heard in public on 6 June 1937 during the university's baccalaureate service, which was held in the auditorium. President Emeritus Rhees and Mrs. Strong were both present, and Dr. Rhees formally dedicated the organ, after which Harold Gleason gave a brief recital.

Of the completed building Rhees remarked, "It is now given its crown of beauty and usefulness in the noble organ which we here dedicate." Turning to Mrs. Strong, he expressed his and the university's appreciation for her generosity, saying, "Now we welcome you here to express our grateful and lasting appreciation of this crowning gift you have made in memory of your illustrious husband. Whenever, as now, your organ's strains reveal its quality for beautiful and uplifting harmonies, the music will be our song of perpetual appreciation of you two bearers of the name which is cut in the stone over the entrance to this building."

The following October, the organ was officially opened to the public with a weekly recital series featuring some of the period's most illustrious names in organ performance. Marcel Dupré gave the opening recital on 10 October. The Campus buzzed with excitement, running two front-page stories on the artist and
his planned program. On the Friday before Dupré’s recital, the paper printed his program:

- Fantasy and Fugue in G minor Bach
- Concerto in B flat Handel
- Fantasy in F minor Mozart
- Comes Autumn Times Sowerby
- Rhapsody on a Breton Canticle Saint-Saëns
- Allegro and Fugue from Third Sonata Mendelssohn
- Introduction and Passacaglia Reger
- Up the Saguenay Alexander Russell
- Husette Ibert
- Angelus Dupré
- Prelude and Fugue Dupré
- Variations and Improvisations on a submitted theme
- Comes Autumn Times

Harold Gleason, Robert Hufstader of Princeton University (a student of Dupré’s), and Catherine Crozier were among the initial artists to perform, and the October 1937 issue of The Diapason announced that “the organ will be used for weekly public recitals to be arranged under the direction of Mr. Gleason, who will play many of the recitals and engage outside artists.”

For all its pioneering features and what must be assumed to have been meticulous tonal finishing by Harrison, the organ never performed well in the space, largely due to the room’s unfortunate acoustics. Unlike its other early American Classic brothers, the Strong organ was built in an almost acoustically dead room. Eastman organ professor emeritus David Craighead remarked that even when the organ was in perfect playing condition, the sound in the room was never quite satisfactory. To begin with, the room was small. Roughly one hundred feet long by forty feet wide by thirty feet high, there was little space for sound to develop. The decorative treatments reduced reverberation even further: the floors were carpeted, the seats cushioned, and the windows framed by heavy curtains. Acoustic tiles hung on the ceiling, absorbing even more sound. Even when empty, the hall had less than a second of reverberation. In addition, the placement of the chambers resulted in what Craighead described as a “ping-pong effect.”

The 1928 construction of the auditorium had anticipated the organ console to be installed on a lift in the center of the orchestra pit, in the same manner as the console Gleason had designed sixteen years earlier for Kilbourn Hall. The Otis Company and the Graves Elevator Company of Rochester tendered bids for the job in December 1928, with Otis quoting a price of $2,600, and Graves quoting $1,558. When it was announced that the organ would not be installed due to financial reasons, the university decided to omit the elevator from the construction, although the elevator shaft was built nevertheless. Eight years later, when the organ contract was indeed signed, the parties discussed the installation of a lift in the
According to Robert Kerner, organ main­

Strong organ was used less and less. By the

eventual demise.

The console was thus placed on a platform

which was accomplished with a block and

re-leather, repair, re-regulate, and tune the

component. A single pipe from four

ranks in the Choir chamber was missing,

as were about a dozen mixture pipes from

the lower Great chest. Due to failed or

faulty racking, some pipes in the Solo divi­

sion had bent resonators at their base. One

of the resonators of the Pedal Trumpet,

while still intact, had broken off. In the

left chamber, many of the offset pipes had

come loose from their racks, and were

mildly damaged. One pipe from the Great

Gemshorn offset was damaged beyond repair.

Kerner estimated the price for

returning the organ to playable condition,

saying, “somewhere between $15,000 and

$25,000 would see the Strong pipe organ

in useable form.” Once again, however, no

action was taken, and in the ensuing years

the organ fell into even worse disrepair.

As late as 1992 the university was still

considering restoration, and Kerner com­

pleted another survey of the organ in

which he inspected the entire instrument,

reporting to the music department on its

condition. The Kerner survey was exten­

sive and reported that the organ was still in

fairly good condition. Most of the leather

was still intact and in good shape. The

console showed less-than-normal wear.

There was some vandalism and damage in

the pipe chambers: a single pipe from four

ranks in the organ fell into even worse disrepair.

Despite the several drawbacks to the

installation, the organ was used quite

extensively in the years following its instal­

lation for solo concerts, orchestral per­

formances, choral accompanying, and for

ceremonies such as the baccalaureate ser­

vices at which it was first heard. Eventually,

the decision was made not to install an elevator, and

Thompson explained, “After investigating the

advisability of installing the elevator, we

have come to the conclusion that indi­

cated conditions governing the use of the

organ are such that we will not provide the

elevator at this time.” Thompson instructed

Zeuch to include the aforementioned extra cable “at no additional cost to us,” leaving the possibility for a future lift installation.

The console was thus placed on a platform built several feet below the top of the shaft. While a seemingly minor detail of the installation, the decision not to install an elevator would contribute to the organ’s eventual demise.

In 1998 a renovation of the basement

of the building, as well as of the stage of the

lower auditorium under the main hall resulted in the reconfiguration of the base­

ment rooms under the main auditorium’s stage. In the area requiring remodeling was

the blower room containing the blower,

static reservoirs, the remote capture machine, as well as the bottom of the con­

sole elevator shaft. The decision was made to remove the console, blower, static reser­

voirs, and capture machine to make way

for the new space, effectively spelling the

end of the organ’s life. Kerner was called in

to remove the components. The two pairs of high- and low-pressure metal windtrunks

from the blower room to each chamber

were cut, their openings filled in with
cement. The contents of the blower room

were carefully removed and placed in stor­

age. To remove the console, contractors
tore out a wall of the elevator shaft, allow­
ing Kerner to remove it through the service entrance in the basement. With the pass of

a reciprocating saw through the cable, the

console was free to be removed to storage, still in nearly new condition due to sparse

use during the previous three decades.

In 1994 Dan Harrison (no relation to the organbuilder), a member of the

university music faculty and himself an

accomplished organist, wrote to Eastman

organ professor David Higgs about the

organ and the impending renovation of

Strong Auditorium, saying, “If renovation of

Strong happens, then I would want to

make sure that the organ renovation is

included. The fact that it is an early G.

Donald Harrison and that it is [a] large

and impressive instrument would be
decisive, I think.” According to Higgs, the

university had no desire to keep the instru­

ment in place at that time, citing the infre­
quent use they would have for it. As plans

for the renovation were laid out, Eastman

expressed interest in taking possession of the instrument and moving the organ out of the building. While the professors of the

organ department realized the historical

significance of restoring the organ in place,

they took into account the lack of access to

Strong Auditorium by the university

music department, as well as the limited

availability of the instrument to Eastman

organists. At that time, it was recommend­
ed that the organ be moved out of the

auditorium to ensure its use. Higgs

recounted this in a 2004 interview, saying,

“We [the organ department] understood

at that time that the hall was in constant

use during the previous three decades.”
Damage to Pedal 16' Trombone

use, and that we would not be able to use the organ much for lessons and concerts. The university music department also informed us that they would have little use for the organ. While we understood the ideal situation of leaving it there, we realized that the organ would see just as little use as it had previously, and most likely would fall into disrepair again.

The organ department had found a new home for Opus 953 in Christ Episcopal Church, adjacent to the Eastman building in downtown Rochester. The organ department planned to construct a gallery across the back wall of the church on which to install the organ, placing the console on the main floor. On 26 June of that year Thomas LeBlanc, provost and dean of the faculty, wrote to Eastman director and dean James Undercofler, saying, “On behalf of the College [of Arts and Sciences], I am pleased to offer the Eastman School the organ ‘as is.’” The letter made clear that Eastman would bear the costs of the removal, storage, restoration, and installation of the organ.

In preparation for the renovation of the auditorium in 1998, Eastman hired Schoenstein & Company Organbuilders to prepare a proposal for the removal, restoration, and installation of the Strong organ in Christ Church. Jack Bethards, president of Schoenstein, sent the proposed plan, along with budget estimates, to David Higgs on 19 March of that year. The outline for work to be done was detailed and extensive: an estimated total of 127 weeks would be needed to complete the project, with an estimated budget ranging from $800,000 to $1.8 million.

At that time, there was a discussion of making changes and tonal additions to the organ to suit the teaching requirements of the Eastman School. Bethards included a carefully-worded two-page section at the end of his report, outlining "the important issues, both artistic and political, in changing this organ." He noted the responsibility placed upon "anyone controlling the destiny of an organ designed by G. Donald Harrison," and remarked on tonal changes and modifications to the console and mechanical systems. On the subject of tonal changes and additions, he stressed the need for keeping the tonal design of the organ original, saying “Every bit of the existing tonal material should be preserved.” The only exceptions to which he gave credence were “necessary changes due to the change in the acoustical environment.” (Christ Church is substantially bigger than the auditorium, and has much greater reverberation.) Writing on tonal additions, Bethards made clear that “any addition would not in any way compromise the tonal balance or egress of the original material,” and that additions “should be kept to the absolute minimum.”

With regards to the console, Bethards again took a conservative but realistic approach, citing the ideal situation in keeping the console completely original. However, he said, “requirements for mobility or multiple [combination] memory may require changes.” He offered three options, including retention of the electro-pneumatic combination action, replacing it with a modern electric action, and constructing an entirely new console, keeping the original as a second console. All three options, however, included removing the original capture machine and replacing it with a solid-state system. The original electro-pneumatic relay was also to be replaced with a solid-state system.

The Schoenstein figures, even without budgeting for additions, were far higher than Eastman had expected, and despite the significant progress made on the preparations for moving the organ to Christ Church, it soon became apparent that there would not be sufficient funds to complete the project. The renovation of the auditorium went forward as planned, and the organ remained in its chambers.

On a visit to the organ in 2004 Rob Kerner noted that the vandalism and general state of the pipework had worsened slightly since his last visit twelve years earlier. In the left chamber, which houses the Great, Swell and Pedal flues, most of the Great 8’ Principal pipes on offset chests had fallen due to failed racking, and were leaning against other pipes. The top octave of the Great Fourniture (and slightly more of the two-rank Pedal Fourniture) was missing. Single pipes from several ranks were also missing, and many pipes that had come out of their rackboards were strewn about the floor. They were all promptly returned to their chests.

In the right chamber, the damage to the pipework was more extensive. Immediately upon entering the chamber, it was apparent that the Pedal Trombone unit was in poor condition. The top six pipes on the C side of the chest closest to the chamber door were badly damaged: resonators were broken off, bent, and dented. A pipe halfway down the C side had come out of its rackboard; the resonator had bent at the bottom and was leaning on the 16’ Flute Conique, three feet away. Boots, resonators, and whole pipes lay on the floor next to the chest, and as many as could be were returned to their chest. The resonator of the C of the 8’ Bassoon had been severed at the block, and was hanging on its hook. As in the other chamber, pipes were missing, most notably two from the Krummhorn and one from the Bassoon. In the Solo box, pipes also had fallen out of their racks, and some were missing. Several flue trebles of the 4’ Clarion were damaged beyond repair. The Choir division was the only division to have escaped serious damage. The inside of the box was not just very clean, but quite pristine, save for the four missing pipes Kerner had noted in his previous survey.

This brings the story of Aeolian-Skinner Opus 953 to the present. The console, static reservoirs, and blower sit in safe storage in a Rochester warehouse. The pedalboard, bench, and console kneeboard lie in storage in the Eastman School building, along with the remote capture machine. It is not known when the organ was last heard. Generally, the organ is very dirty, as would be expected. The Choir and Swell boxes were designed to have their shutters open rather than open when the organ was turned off, a feature that has saved those two divisions from the blanket of dust that
covers the rest of the instrument. In the right chamber, chunks of plaster from construction fill some of the pipes.

While it may not be in ideal condition, the organ is certainly in a state to permit a thorough and historically accurate restoration. For the most part, a thorough cleaning would bring divisions back to like-new condition. Although the leather (save for several reservoir gussets) is in operational condition, a complete re-leathering of the instrument would be in order.

Presently, the Eastman organ department continues to express interest in the organ through the Eastman Rochester Organ Initiative (EROI). EROI's goal is to assemble an unparalleled collection of instruments in various historical styles at the school and in the Rochester area. In the Summer 2003 issue of Resonance, the newsletter of the Eastman organ department, plans for the Strong organ were mentioned, describing "the relocation and restoration of the completely original Aeolian-Skinner organ designed by G. Donald Harrison and Harold Gleason."

While Eastman has been more vocal, the university music department is not indifferent to the future of the organ. Dr. Kim Kowalke, chairman of the department (separate from the Eastman School) now realizes the importance and significance of the instrument, and does not rule out its restoration in its original hall. Despite the less-than-ideal acoustics, Kowalke says Strong would be an ideal performance and practice space. "The hall sits empty from morning till night most days. It's a better practice facility, use facility and concert facility for Eastman organists than moving it [to a church or other facility that sees considerable use]."

While he concedes that the university music department would have less use for the organ than would a professional music school such as Eastman, Kowalke says that the instrument would be open to Eastman students for practice, classes, and concerts, in addition to performances of orchestral and choral repertoire with university ensembles. Kowalke noted that a planned renovation of the building to convert it from a multi-use facility to a hall dedicated to music performance would provide the perfect opportunity to address the restoration of the organ, as well as to improve the acoustics. Without the dramatic productions taking place in the auditorium as they currently do, much more time would be available for using the organ. While a time frame has not been set, Kowalke mentioned the renovation would most likely be taking place within the next five years.

In February 2004 both the Eastman organ department and the university music department received information that makes the possibility of restoring the organ in place a real one. David Higgs, currently the chairman of the Eastman organ department, was unaware of the current schedule in Strong, and the large amount of time that would be available for student practice. He was also unaware of the impending renovation of the auditorium, and the university music department's desire to keep the organ in Strong. At the same time, Kim Kowalke was unaware of the importance of the organ and of the possibility of restoring it in its original home. As this article is being written, the two parties are coming together to discuss the growing possibility of restoring the organ in Strong Auditorium as part of the first phase of EROI.

The future of this important organ, while looking brighter than previously, still hangs somewhat in the balance. The article in Resonance makes the most important point about this organ: it has survived essentially intact. Ironically, the principal benefit of its limited use is that no one ever became interested in altering it. Aside from issues of decay and destruction, the pipes exist today as Harrison left them in 1937. The chest and chamber layouts remain unchanged, and the acoustics of the hall, however problematic, have been changed...
HARRISON'S FORGOTTEN AMERICAN CLASSIC

Original blower room in Strong Auditorium basement with blower and remote combination machine

only in that the acoustic ceiling tiles have been removed. If the goal of EROI is to assemble historic instruments, leaving the organ in Strong Auditorium would not only agree with that goal, but would seem to be the perfect setting.

The author examined the organ in February 2004, and had the chance to hear how the organ reacted to the slightly-altered room. Due largely to a new ceiling without acoustic tiles, there was a clear reverberation of at least one-and-a-half to two seconds when pipes were blown by mouth. However, the heavy velvet drapes still hang on the windows, the seats are still cushioned, and the floors are still carpeted, leaving several possibilities for improvement.

It is true that there are more famous, more complete and more important organs in the Harrison American Classic oeuvre, but the organ world has in Rochester a single, virtually untouched relic from the beginning of the organ reform movement. The Groton organ, although having just undergone a restoration to turn back the clock on much-altered voicing, nevertheless remains altered from its original state. Jonathan Ambrosino, who worked on the Groton project, admits this, saying, "It's all conjectural, and at its best it gets back into the style without quite getting back to the original tone...the organ begins to sound far closer to something Harrison himself might recognize. But this is a third chapter in the organ's life, not a return to the first one." The organ in The Church of the Advent in Boston also exists in an altered state, its voicing changed and specification altered. The Saint Mark's organ was recently augmented with dozens of new pipe and digital ranks.

It is an unfortunate fact that most organs from this period lie in this condition. Yet among all the landmark early Harrison organs of the 1930s, Opus 953 in Rochester stands out as the only completely unaltered instrument in a list of dozens of phenomenal organs from the 1930 and 1940s. The closest any Harrison organ from that period comes to being completely original is the gallery organ of Opus 927 for Trinity Episcopal Church in New Haven, Connecticut, built in 1935. Even there, the Swell 8' and 4' chorus reeds were replaced by Aeolian-Skinner in 1948. The Rochester organ remains a valuable artifact from which much can be learned, including Harrison's thoughts on tonal matters in the early days of the organ reform movement without having to piece the picture together from unaltered portions of various extant organs. All the original components necessary for the Rochester organ to function exist, even though some have been removed. The instrument could be completely re-assembled with original equipment in its original room, turning back the clock seventy years.

The organ community has a fantastic and unique opportunity in Rochester. The Continued on page 23
Aeolian-Skinner Opus 953, 1937

Strong Auditorium, University of Rochester, Rochester, New York

Specification taken from console

GREAT

<table>
<thead>
<tr>
<th>Stop</th>
<th>Stop Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violone</td>
<td>16'</td>
</tr>
<tr>
<td>Principal</td>
<td>8'</td>
</tr>
<tr>
<td>Diapason</td>
<td>8'</td>
</tr>
<tr>
<td>Hohlflöte</td>
<td>8'</td>
</tr>
<tr>
<td>Gemshorn</td>
<td>8'</td>
</tr>
<tr>
<td>Octave</td>
<td>4'</td>
</tr>
<tr>
<td>Flute Harmonique</td>
<td>4'</td>
</tr>
<tr>
<td>Quint</td>
<td>2 2/3'</td>
</tr>
<tr>
<td>Super Octave</td>
<td>2'</td>
</tr>
<tr>
<td>Blockflöte</td>
<td>2'</td>
</tr>
<tr>
<td>Full Mixture</td>
<td>IV</td>
</tr>
<tr>
<td>Fourniture</td>
<td>IV</td>
</tr>
<tr>
<td>Cymbel</td>
<td>III</td>
</tr>
<tr>
<td>Chimes</td>
<td>from Choir</td>
</tr>
</tbody>
</table>

- Swell to Great
- Choir to Great
- Solo to Great
- Rück-Positiv to Great
- Swell to Great 16'
- Swell to Great 4'
- Choir to Great 16'
- Choir to Great 4'
- Solo to Great 16'
- Solo to Great 4'

SWELL

<table>
<thead>
<tr>
<th>Stop</th>
<th>Stop Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quintaton</td>
<td>16'</td>
</tr>
<tr>
<td>Geigen Principal</td>
<td>8'</td>
</tr>
<tr>
<td>Stopped Flute</td>
<td>8'</td>
</tr>
<tr>
<td>Viola da Gamba</td>
<td>8'</td>
</tr>
<tr>
<td>Viole Celeste</td>
<td>8'</td>
</tr>
<tr>
<td>Octave</td>
<td>4'</td>
</tr>
<tr>
<td>Flute Triangulaire</td>
<td>4'</td>
</tr>
<tr>
<td>Violina</td>
<td>4'</td>
</tr>
<tr>
<td>Nazard</td>
<td>2 2/3'</td>
</tr>
<tr>
<td>Flageole</td>
<td>2'</td>
</tr>
<tr>
<td>Full Mixture</td>
<td>IV</td>
</tr>
<tr>
<td>Mein Jeu</td>
<td>IV</td>
</tr>
<tr>
<td>Double Trumpet</td>
<td>16'</td>
</tr>
<tr>
<td>Trumpet</td>
<td>8'</td>
</tr>
<tr>
<td>Clarion</td>
<td>4'</td>
</tr>
<tr>
<td>Oboe</td>
<td>8'</td>
</tr>
<tr>
<td>Tremolo</td>
<td></td>
</tr>
</tbody>
</table>
- Swell 16'
- Swell 4'
- Choir to Swell
- Rück-Pos[iv] to Swell

CHOIR

<table>
<thead>
<tr>
<th>Stop</th>
<th>Stop Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dulciana</td>
<td>16'</td>
</tr>
<tr>
<td>Viola</td>
<td>8'</td>
</tr>
<tr>
<td>Orchestral Flute</td>
<td>8'</td>
</tr>
<tr>
<td>Dolcan</td>
<td>8'</td>
</tr>
<tr>
<td>Dolcan Celeste</td>
<td>8'</td>
</tr>
<tr>
<td>Zaubflöte</td>
<td>4'</td>
</tr>
<tr>
<td>Nazard</td>
<td>2 2/3'</td>
</tr>
<tr>
<td>Piccolo</td>
<td>2'</td>
</tr>
<tr>
<td>Tierce</td>
<td>1 1/3'</td>
</tr>
<tr>
<td>Clarinet</td>
<td>8'</td>
</tr>
<tr>
<td>Chimes</td>
<td></td>
</tr>
<tr>
<td>Tremolo</td>
<td></td>
</tr>
</tbody>
</table>
- Choir 16'
- Choir 4'
- Swell to Choir
- Solo to Choir
- Rück-Positiv to Choir
- Swell to Choir 16'
- Swell to Choir 4'

RUCK[sic]-POS[ITIV]

<table>
<thead>
<tr>
<th>Stop</th>
<th>Stop Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koppelflöte</td>
<td>8'</td>
</tr>
<tr>
<td>Quintade</td>
<td>8'</td>
</tr>
<tr>
<td>Principal</td>
<td>4'</td>
</tr>
<tr>
<td>Nachthorn</td>
<td>4'</td>
</tr>
<tr>
<td>Nasat</td>
<td>2 2/3'</td>
</tr>
<tr>
<td>Blockflöte</td>
<td>2'</td>
</tr>
<tr>
<td>Terz</td>
<td>1 1/3'</td>
</tr>
<tr>
<td>Largot</td>
<td>1 1/4'</td>
</tr>
<tr>
<td>Siffloge</td>
<td>1'</td>
</tr>
<tr>
<td>Scharf</td>
<td>IV</td>
</tr>
<tr>
<td>Zimbel</td>
<td>III</td>
</tr>
<tr>
<td>Krummhorn</td>
<td>8'</td>
</tr>
</tbody>
</table>

PEDAL

<table>
<thead>
<tr>
<th>Stop</th>
<th>Stop Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal</td>
<td>16'</td>
</tr>
<tr>
<td>Contre Basse</td>
<td>16'</td>
</tr>
<tr>
<td>Violone</td>
<td>16'</td>
</tr>
<tr>
<td>Flute Conique</td>
<td>16'</td>
</tr>
<tr>
<td>Quintaton</td>
<td>16'</td>
</tr>
<tr>
<td>Dulciana</td>
<td>16'</td>
</tr>
<tr>
<td>Harmonic Trumpet</td>
<td>8'</td>
</tr>
<tr>
<td>Orchestral Oboe</td>
<td>8'</td>
</tr>
<tr>
<td>Clarion</td>
<td>4'</td>
</tr>
<tr>
<td>Tremolo</td>
<td></td>
</tr>
</tbody>
</table>
- Solo 16'
- Solo 4'
- Swell to Solo
- Great to Solo
- Choir to Solo
- Rück-Pos[iv] on Solo
- Swell to Solo 16'
- Swell to Solo 4'
- Choir to Solo 16'
- Choir to Solo 4'
- Great to Pedal
- Swell to Pedal
- Choir to Pedal
- Solo to Pedal
- Rück-Pos[iv] to Pedal
- Great to Pedal 4'
- Swell to Pedal 4'
- Choir to Pedal 4'
- Solo to Pedal 4'
- Rück-Pos[iv] to Pedal 4'

<table>
<thead>
<tr>
<th>Stop</th>
<th>Stop Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blockflöte</td>
<td>2'</td>
</tr>
<tr>
<td>Mixture</td>
<td>III</td>
</tr>
<tr>
<td>Fourniture</td>
<td>II</td>
</tr>
<tr>
<td>Trombone</td>
<td>16'</td>
</tr>
<tr>
<td>Trumpet</td>
<td>8'</td>
</tr>
<tr>
<td>Bassoon</td>
<td>8'</td>
</tr>
<tr>
<td>Clarion</td>
<td>4'</td>
</tr>
<tr>
<td>Chimes</td>
<td>from Choir</td>
</tr>
</tbody>
</table>

- Vol. 49, No. 3 The TRACKER 21
The Disintegration of Heritage

BY JONATHAN AMBROSINO

Poor Ernest Skinner. Dying at ninety-four in 1960, he survived probably longer than an organbuilder should. As his style faded into disregard, numerous Skinner creations were either severely altered or replaced outright. The earliest completely unaltered four-manual Skinner dates from 1915, at the Unitarian Universalist Church of Our Fathers in Detroit—built fourteen years into the existence of Skinner’s company and already well into the development of his middle mature period. Understanding Skinner’s earliest work now requires stitching together bits of tonal and mechanical evidence, guessing at the result and motivation rather than listening to hard evidence. Poor Ernest Skinner. Poor us.

The funny thing is that few people extend the same sentiment to G. Donald Harrison—even though his best work has fared no better, and sometimes worse. Of Harrison’s earliest quartet of collaborations with Ernest Skinner—the so-called “University” organs of Michigan, Princeton, Chicago, and Yale, dating from 1928-1929—only Yale survives. Being a rebuild and enlargement of a 1915 Steere (itself a considerable reconstruction of the original 1903 Hutchings), Yale is more a spectacular anomaly than a typical example. The next six years saw a development in Harrison’s work so gradual yet sweeping, that Harrison himself might actually recognize it. Of the organs from Groton forward, the news is better than it was ten years ago. Some of the organs are closer to resembling their original states, although few can truly claim original condition status. Groton has been changed as much as any organ, at first by Harrison himself in collaboration with the School’s famous organ-designing musician Edward B. “Ned” Gammons, and later by others. The most recent work, a collaboration of Foley-Baker Inc., Jeff Weiler, and the present author, completed in early 2003, attempted to rationalize the post-Harrison changes into a tonal framework that Harrison himself might actually recognize. Though guided by research and knowledge of unaltered instruments, this work cannot be called restoration, however: many of the most critical pipes, including the bulk of the Great and Positif choruses, were simply too altered to be “put back.” Instead, one hears plausible approximation. Groton’s famous sister organ at Boston’s Church of the Advent (completed April 1936) underwent an equally comprehensive series of changes in 1964; some of it was recently reversed, but much more (notably the Great principal chorus) remains far from what Harrison might recognize.

The instruments following Groton and Advent have met their own fates. A 103-rank organ for Wellesley College, finished directly after the Church of the Advent, was harshly revised in the late 1960s, and so remains; although perhaps slightly buried and lacking a gracious acoustic, the instrument could be exquisite once again. Saint Mark’s Philadelphia, a 104-rank organ of 1937, self-consciously mild in a church of sublime visual delicacy, was recently rebuilt by Cornel Zimmer. This project left the Harrison material essentially untouched but added dozens of new ranks and a riotous array of digital voices, some vexingly veiled behind attractive new gallery casework. The organ plays from its third console. Plymouth Church of the Pilgrims in Brooklyn Heights (1937), a more conservative four-manual with a Solo instead of a Positiv, was carefully restored a decade ago by Nelson Barden Associates, reversing tonal changes and additions; this organ is also on its third console. Harrison’s 1939 Columbia University instrument underwent changes by Aeolian-Skinner in 1962, following the direction of Searle Wright. The tonal finisher on the job, Allen Kinzev, was scrupulous about preserving Harrison’s masterful choruses, and the general character of the organ remains available, though with additions, electronic 32-foot registers and a new Turner console. The organ at Sage Chapel, Cornell University (1940) has had four tonal changes, but is more or less intact, having always been cherished by long-time OHS member
Donald R.M. Paterson. Another large pre-War job, the 1941 organ for the University of Texas at Austin is being renovated and relocated by Schoenstein & Co. to a new church in Amarillo, Texas, gaining a few additions along the way—a happy fate for an organ many thought might languish toward disposal.

Some smaller organs have escaped without change. The Brooks School in North Andover, Massachusetts houses an idiosyncratic three-manual of twenty stops, designed by Edward Flint and completed in 1938. The organ was painstakingly restored a few years ago by the A. Thompson-Allen Co., retaining two additions by Andover that Aeolian-Skinner had prepared for: a Great 8-foot Principal and Swell Celeste. (Ironically, the original absence of such stops would have ensnared the instrument’s renegade status.) Alas, this period’s most influential organ—the “Germanic” Museum at Harvard, the little two-manual unenclosed instrument upon which E. Power Biggs began his famous series of broadcasts and recordings—was destroyed by fire in 1971.

It is still possible to visit many of these 1930s organs and hear the Harrison instrument within. Some have beautiful additions or elegant new consoles with all the modern conveniences. But is that good enough? Many of these organs have been subjected to work of very high quality, but with an artistic intent similar to that given to the historic Baroque and pre-Baroque German and Dutch organs by the first wave of “restorations” (more properly rebuilds) of the 1940s, ’50s, and ’60s: the best of intentions amidst all the limitations of that generation’s understanding. Harrison’s organs have an additional twist: he said we should be able to play all music on these organs, but how are we supposed to do so without more foundation tone, Great reeds and all the musical understanding of our time? It is a natural enough question with a thorny answer: his authenticity wasn’t ours, and respecting his organs means viewing the music through his filter. Playing any historic organ takes both work and thought. A Harrison instrument is no different, with the added advantage that its creator was more in tune with much of the core organ literature we still play today. As with any stylized organ, careful listening and a patience to look beyond the obvious will provide answers to practically any registration issue. Historical concerns aside, the unchanged early Harrison organ produces a subtle, sophisticated and balanced type of music-making which, as the rebuilders have handily proven, is extremely easy to undo.

Still, understanding Harrison’s fascinating early work is no different than for Skinner: it requires the same patching together of original this and that, and guessing at the result and motivation rather than listening to a continuous body of evidence. In that context, Aeolian-Skinner Op. 953 at Strong Auditorium remains the premier unaltered Harrison organ from the early mature period. It contains all of the features that characterize the Groton School and the Church of the Advent, plus a few more. The prospect of its sympathetic treatment, scrupulously not deleting, adding or changing one pipe, is not merely good news for lovers of Harrison organs. It offers an unprecedented opportunity for a post-1930 organ of tremendous significance to be subject to the latest standards of restoration and conservation. Lucky G. Donald Harrison!

Jonathan Ambrosino was President of the Organ Historical Society from 1999 to 2001 and a councilor from 1993 to 1999. In the past two years, he has been involved with tonal reconstruction work on heavily revised Aeolian-Skinner organs at Calvary Church, Memphis (Op. 932, 1935), Groton School, Massachusetts (Op. 936, 1935) and Church of the Advent, Boston (Op. 940, 1936). He has acted widely as a consultant; present clients include Harvard Memorial Church, Saint John’s Episcopal Cathedral (Denver), the University of Puerto Rico (San Juan), and the Washington National Cathedral.

Continued from page 20

decision on what to do with the organ is one that carries great weight and responsibility. Whoever makes the decision—whether a group of people or a single person—will have to consider what this organ means historically in its original home. Several considerations, including the acoustics of the room, the use for the organ if restored in that room, and finances will all play an important part in the decision-making process. With a planned renovation of Strong Auditorium pending in the near future, the possibility of restoring the organ as part of that renovation is real. If good use of the organ can be made in Strong Auditorium, the restoration of Aeolian-Skinner’s Opus 953 in place is certainly an opportunity to be seriously considered, especially as the American Classic organ becomes increasingly appreciated as an historic style of organbuilding.

Jonathan Orloff is a freshman double degree student at the University of Rochester and the Eastman School of Music, studying organ performance and engineering. Upon graduation he plans on becoming an organbuilder. Mr. Orloff can be contacted at jorloff@alum.exeter.edu.

Special thanks to Jonathan Ambrosino, Rob Kerner, Kim Kowalke, David Higgs.

NOTES

2. All correspondence cited in this article is housed in the University of Rochester Archives.
3. Private communication.
4. Private communication.
5. Private communication.
6. Private communication.

Jonathan Orloff in the organ in February 2004, looking at weather Great chest.
Chest Layout of Aeolian-Skinner Opus 953, 1937
Strong Auditorium, University of Rochester, Rochester, New York

Ranks listed back to front

* Indicates stops on pitman chests with individual unit actions

? Indicates information that could not be verified at the time the organ was examined

<table>
<thead>
<tr>
<th>CHEST NAME</th>
<th>TYPE</th>
<th>NOTES</th>
<th>WIND</th>
<th>RANKS</th>
<th>DERIVED STOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Chamber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Pedal Principal</td>
<td>Offset EP</td>
<td>14</td>
<td>3 ½"</td>
<td>16' Principal</td>
<td>PD 16' Principal</td>
</tr>
<tr>
<td>- Pedal Principal Extension</td>
<td>Offset EP</td>
<td>18</td>
<td>3 ½"</td>
<td>16' Principal</td>
<td>PD 16' Principal</td>
</tr>
<tr>
<td>- Pedal Octave Offset</td>
<td>Offset EP</td>
<td>10</td>
<td>3 ½"</td>
<td>8' Octave</td>
<td>PD 8' Octave</td>
</tr>
<tr>
<td>- Pedal Upperwork</td>
<td>Fitman EP</td>
<td>32</td>
<td>3 ½"</td>
<td>8' Octave (22)</td>
<td>PD 8' Octave</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4' Super Octave</td>
<td>PD 4' Super Octave</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 ½' Mixture I</td>
<td>PD III Mixture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 ½' Mixture II</td>
<td>PD III Mixture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 ½' Mixture III</td>
<td>PD III Mixture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1½' Fourniture I</td>
<td>PD II Fourniture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>⅛' Fourniture II</td>
<td>PD II Fourniture</td>
</tr>
<tr>
<td>- Lower Great</td>
<td>Pitman EP</td>
<td>61</td>
<td>3</td>
<td>16' Violone (43)</td>
<td>GT 16' Violone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GT 16' Violone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8' Diapason (49)</td>
<td>GT 8' Diapason</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4' Octave</td>
<td>GT 4' Octave</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2½' Twelfth</td>
<td>GT 2½' Twelfth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2' Super Octave</td>
<td>GT 2' Super Octave</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2' Fourniture I</td>
<td>GT IV Fourniture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1½' Fourniture II</td>
<td>GT IV Fourniture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1' Fourniture III</td>
<td>GT IV Fourniture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>⅛' Fourniture IV</td>
<td>GT IV Fourniture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>½' Cymbel I</td>
<td>GT III Cymbel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>½' Cymbel II</td>
<td>GT III Cymbel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>½' Cymbel III</td>
<td>GT III Cymbel</td>
</tr>
<tr>
<td>-Upper Great</td>
<td>Pitman EP</td>
<td>61</td>
<td>3</td>
<td>8' Principal (49)</td>
<td>GT 8' Principal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8' Gemshorn (54)</td>
<td>GT 8' Gemshorn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8' Hohlfliite (51)</td>
<td>GT 8' Hohlfliite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4' Octave</td>
<td>GT 4' Octave</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2' Blockflöte</td>
<td>GT 2' Blockflöte</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2½' Full Mixture I</td>
<td>GT IV Full Mixture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2' Full Mixture II</td>
<td>GT IV Full Mixture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1½' Full Mixture II</td>
<td>GT IV Full Mixture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1' Full Mixture IV</td>
<td>GT IV Full Mixture</td>
</tr>
<tr>
<td>- Great Violone Offset I</td>
<td>Offset EP</td>
<td>8</td>
<td>3'</td>
<td>16' Violone</td>
<td>GT 16' Violone</td>
</tr>
<tr>
<td>- Great Violone Offset II</td>
<td>Offset EP</td>
<td>10</td>
<td>3'</td>
<td>16' Violone</td>
<td>GT 16' Violone</td>
</tr>
<tr>
<td>- Great Diapason Offset</td>
<td>Offset EP</td>
<td>12</td>
<td>3'</td>
<td>8' Diapason</td>
<td>GT 8' Diapason</td>
</tr>
<tr>
<td>- Principal/Gemshorn Offset</td>
<td>Offset EP</td>
<td>20</td>
<td>3'</td>
<td>8' Gemshorn (8)</td>
<td>GT 8' Gemshorn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8' Principal (12)</td>
<td>GT 8' Principal</td>
</tr>
<tr>
<td>- Great Hohlfliite Offset</td>
<td>Offset EP</td>
<td>10</td>
<td>3'</td>
<td>8' Hohlfliite</td>
<td>GT 8' Hohlfliite</td>
</tr>
</tbody>
</table>
Lower Swell
- Lower Swell Main
Pitman EP 73 3 ¾" ?? Plein Jeu IV SW IV Plein Jeu
?? Plein Jeu III SW IV Plein Jeu
?? Plein Jeu II SW IV Plein Jeu
?? Plein Jeu I SW IV Plein Jeu
2' Full Mixture IV SW IV Full Mixture
?? Full Mixture III SW IV Full Mixture
?? Full Mixture II SW IV Full Mixture
2' Full Mixture I SW IV Full Mixture
2' Flageolet SW 2' Flageolet
2½' Nazard SW 2½' Nazard
8' Stopped Flute SW 8' Stopped Flute

- Lower Swell Reeds
Offset EP 73 6" 4' Clarion SW 4' Clarion
8' Trumpet SW 8' Trumpet

- Quintaton/Principal Offset I
Offset EP 10 6" 16' Quintaton (5) SW 16' Quintaton
PD 16' Quintaton
8' Geigen Principal (5) SW 8' Geigen Principal

- Quintaton/Principal Offset II
Offset EP 10 6" 16' Quintaton (7) SW 16' Quintaton
PD 16' Quintaton
8' Geigen Principal (3) SW 8' Geigen Principal

Upper Swell
- Upper Swell Main
Pitman EP 73 6" 8' Oboe SW 8' Oboe
16' Double Trumpet (69) SW 16' Double Trumpet
4' Violina SW 4' Violina
4' Flute Triangulaire SW 4' Flute Triangulaire
8' Viole Celeste SW 8' Viole Celeste
8' Geigen Principal SW 8' Geigen Principal
8' Viola da Gamba SW 8' Viola da Gamba
16' Quintaton* (61) SW 16' Quintaton
PD 16' Quintaton
PD 8' Quintaton

- Offset I
Offset EP 6" 8' Viola da Gamba SW 8' Viola da Gamba
8' ??
4 16' Double Trumpet (c d#) SW 16' Double Trumpet

- Offset II
Offset EP 8 6" 8' Stopped Flute (c g) SW 8' Stopped Flute

Right Chamber
- Left Rück-Positiv
Pitman EP 61 2 ½" ?? Scharf I RP IV Scharf
?? Scharf II RP IV Scharf
?? Scharf III RP IV Scharf
1 ½' Scharf IV RP IV Scharf
1' Siffloë RP 1' Siffloë
2' Blockflöte RP 2' Blockflöte
2 ½' Nazat RP 2 ½' Nazat
4' Nachthorn RP 4' Nachthorn
8' Quintade RP 8' Quintade

- Right Rück-Positiv
Pitman EP 61 2 ½" 8' Krummhorn RP 8' Krummhorn
?? Zimbel III RP III Zimbel
?? Zimbel II RP III Zimbel
?? Zimbel I RP III Zimbel
1½' Larigot RP 1½' Larigot
1½' Terz RP 1½' Terz
4' Prinzipal RP 4' Prinzipal
8' Koppellöte (53) RP 8' Koppellöte

- Koppellöte Offset
Offset EP 8 2½" 8' Koppellöte RP 8' Koppellöte

- Pedal Upperwork
Pitman EP 32 3 ¾" 8' Open Flute (24) PD 8' Open Flute
4' Nachthorn PD 4' Nachthorn
8' Bassoon PD 8' Bassoon
Pedal Register
- **Pedal Open Flute Offset**
 - Offset EP
 - 8' Open Flute
- **Pedal Trombone Unit**
 - Unit EP
 - 5' Trombone
- **Pedal Flute Conique**
 - Offset EP
 - 3 3/4' Flute Conique
- **Pedal Contre Basse I**
 - Offset EP
 - 3 3/4' Contre Basse (c-e'1)
- **Pedal Contre Basse II**
 - Offset EP
 - 3 3/4' Contre Basse (f-g'2)

Solo
- **Solo Main**
 - Pitman EP
 - 73' Clarion
- **Choir Dulciana Offset I**
 - Offset EP
 - 8' Dulciana (c-g)
- **Choir Dulciana Offset II**
 - Offset EP
 - 4' Dulciana (g#-b)
- **Chimes**
 - 25 Chimes

Choir
- **Choir Main**
 - Pitman EP
 - 73' Clarinet
 - 8' Clarinet
 - 1 3/4' Tierce (61)
 - 1 1/2' Piccolo (61)
 - 2 1/2' Nazard (61)
 - 4' Zauberalte
 - 8' Dolcan Celeste (61)
 - 8' Orchestral Flute
 - 8' Dolcan
 - 8' Viola
 - 16' Dulciana* (61)
- **Orchestral Flute Offset**
 - Offset EP
 - 12' Orchestral Flute

Electro-Pneumatic Chests
- 21 Offset Electro-Pneumatic Chests
- 1 Unit Electro-Pneumatic Chest
- 10 Pitman Electro-Pneumatic Chests

Dedicated to creating pipe organs possessing musical integrity and tonal excellence
- Parkey Organ Builders
- 915 Lancaster Avenue, Columbia, Pennsylvania 17512
- Phone: (717) 684-3573
- Website: www.parkeyorgans.com

Restoration & Service
- New Instruments
- 3870 Peachtree Ind. Blvd., Suite 150-285
- Duluth, Georgia 30096
Casparini in Rochester and Vilnius: A New Approach to Organ Restoration

BY JOEL SPEERSTRA

INDEPENDENCE AND THE AGE OF THE ENLIGHTENMENT

In August of 1991 Vilnius became the capital of the independent state of Lithuania for the first time since 1385. Apart from a few years of besieged self-rule directly following World War I, Lithuania had been occupied for nearly as long as the United States has been independent. In March of 1776 Adam Gottlob Casparini (1715–1788) built a splendid baroque organ in Vilnius’s Church of the Holy Ghost, a Polish Dominican congregation located in the heart of the Lithuanian capital. This was during the rule of the last King of Lithuania, Stanislaus August Ponietowski (1764–1795), who was a passionate proponent of the ideals of the Enlightenment.

In October of 1776 the Polish-Lithuanian hero Tadeusz Kosciuszko (1746–1817) arrived in Philadelphia, where he was deeply moved by the text of the Declaration of Independence, became a friend of Thomas Jefferson, and eventually played a key role in George Washington’s army during the War of Independence. One of the few well-trained military engineers in the American army, Kosciuszko is credited with winning the Battle of Saratoga, New York, which proved to be a turning point in the war. Meanwhile, the Polish-Lithuanian Commonwealth was invaded and partitioned three times, beginning in 1772, by Russia, Prussia, and Austria, until it was entirely occupied by 1795. After the second partition, Kosciuszko returned to Europe to lead a rebellion in an effort to liberate the Commonwealth. This quest ended unhappily for Kosciusko, who, after a time of internment, finished out his years in exile in Switzerland.

Now there is a new cooperation that reaffirms old alliances between upstate New York and the Lithuanian Commonwealth. The restoration of the Casparini organ is underway, a collaboration between the Eastman School of Music in Rochester, New York, the Göteborg Organ Art Center (GOArt) in Göteborg, Sweden, and the Ministry of Culture in Lithuania. The project has three distinct goals:

1. A thorough documentation of the 1776 Casparini organ in Vilnius (completed).
2. A thorough restoration of the Casparini organ in Vilnius (currently underway).
3. A replica of the Casparini organ for the Eastman School of Music (begun in January of this year). The instrument will be named the Craighead-Saunders organ, in honor of legendary Eastman organ professors David Craighead and Russell Saunders. It will be installed in Christ Church in Rochester, which is adjacent to the Eastman campus.¹

ADAM GOTTLOB CASPARINI

Adam Gottlob Casparini was a member of one of the finest European organbuilding dynasties. Casparini’s grandfather, who was a native of Silesia, took the name Eugenio Casparini during his long career in Italy. It was he who built the famous Sonnenorgel (so-called because of its decorative circles of Pedal mixture pipes in the facade) in the Church of Saints Peter and Paul in Görlitz in 1703. Adam Gottlob Casparini trained with Eugenio’s son Adam Horatio (1676–1745) as well as with Heinrich Gottfried Trost (1681–1759). Adam Gottlob’s uncle, Sigismund Casparini, held the post of court organbuilder in Königsberg until his death in 1741, when the post was taken over by Adam Gottlob. A.G. Casparini finished at least twenty-four organs in Königsberg and the Baltic region, but the bombing of Königsberg in World War II destroyed most of his instruments, leaving the Vilnius organ—the only complete example of his work to have survived—as an invaluable link to the Königsberg organ school and the Baltic musical past that has otherwise almost completely disappeared. Having survived Tsarist, Napoleonic, German Imperialist, German Fascist, and Soviet occupations of Vilnius, this most important instrument is currently undergoing its first thorough and careful restoration since its construction.

¹ Vilnius Facade
THE CASPARINI ORGAN AND A PAN-EUROPEAN STYLE

The Casparini organ in the Holy Ghost Church has two manuals and pedal in a generously proportioned case that measures about thirty feet long, seven feet deep and thirty-six feet tall (including the standing angels on the Pedal towers). Behind the windchests for the upper manual there is even room for a workbench inside the case. The volume of the case likely creates a resonating chamber that supports the late baroque ideal of gravitas clearly represented in the disposition of the Pedal, with its low-lying color stops, including the 12' Bass, and the 8' and 6' Flaut & Quint Bass. The organ’s specification is:

Claviatura Prima

<table>
<thead>
<tr>
<th>Stop</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bordun</td>
<td>16'</td>
</tr>
<tr>
<td>Principal</td>
<td>8'</td>
</tr>
<tr>
<td>Hohl Flaut</td>
<td>8'</td>
</tr>
<tr>
<td>Qvintathon</td>
<td>8'</td>
</tr>
<tr>
<td>Octava Principal</td>
<td>4'</td>
</tr>
<tr>
<td>Flaut Travers</td>
<td>4'</td>
</tr>
<tr>
<td>Qvinta</td>
<td>3'</td>
</tr>
<tr>
<td>Super Octava</td>
<td>2'</td>
</tr>
<tr>
<td>Flach Flot</td>
<td>2'</td>
</tr>
<tr>
<td>Tertia</td>
<td>1 3/5'</td>
</tr>
<tr>
<td>Mixtura</td>
<td>V</td>
</tr>
<tr>
<td>Trompet</td>
<td>8'</td>
</tr>
</tbody>
</table>

Claviatura Seconda

<table>
<thead>
<tr>
<th>Stop</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Amale</td>
<td>8'</td>
</tr>
<tr>
<td>Iula [Viola]</td>
<td>8'</td>
</tr>
<tr>
<td>Unda Maris</td>
<td>8'</td>
</tr>
<tr>
<td>Flaut Major</td>
<td>8'</td>
</tr>
<tr>
<td>Principal</td>
<td>4'</td>
</tr>
<tr>
<td>SpielFlot</td>
<td>4'</td>
</tr>
<tr>
<td>Flaut Minor</td>
<td>4'</td>
</tr>
<tr>
<td>Octava</td>
<td>2'</td>
</tr>
<tr>
<td>WaldFlot</td>
<td>2'</td>
</tr>
<tr>
<td>Mixtura</td>
<td>4V</td>
</tr>
<tr>
<td>Vox Humana</td>
<td>8'</td>
</tr>
<tr>
<td>Vacant²</td>
<td></td>
</tr>
</tbody>
</table>

Pedall [sic]

<table>
<thead>
<tr>
<th>Stop</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Bass</td>
<td>16'</td>
</tr>
<tr>
<td>Violon Bass</td>
<td>16'</td>
</tr>
<tr>
<td>Full Bass</td>
<td>12'</td>
</tr>
<tr>
<td>Octava Bass</td>
<td>8'</td>
</tr>
<tr>
<td>Flaut & Quint Bass</td>
<td>8', 6'</td>
</tr>
<tr>
<td>Super Octava Bass</td>
<td>4'</td>
</tr>
<tr>
<td>Posaun Bass</td>
<td>16'</td>
</tr>
<tr>
<td>Trompet Bass</td>
<td>8'</td>
</tr>
</tbody>
</table>

The pipework in general is quite well preserved, although it has undergone several stages of nicking during a late nineteenth- or early twentieth-century restoration/alteration, the goal of which was to give the organ a more romantic character.³ The pitch was also lowered at some point by one half step to A = 440 Hz. Fortunately this was accomplished by rehanging the trackers at the keys one note to the left, rather than by changing the length of the pipes. The pipework is almost complete; apart from a few individual pipes, only the resonators of the 8' Trompet and the resonators, tongues, and shallots of the 8' Vox Humana are missing. In the Pedal, the 6’ pipes of the Flaut & Quint Bass and the 4’ Principal, which was made of wood, are missing. The pipework is generally very well made, showing
influences from the many regions where the Casparini family was active, and representing what organbuilder Munetaka Yokota has called “healthy European baroque pipemaking tradition at its best.”

Casparini’s instruments are excellent examples of the mid-eighteenth-century organ aesthetic that also developed in the circle around Johann Sebastian Bach and his sons. Several details point to the Central Voce Humana-like undulating stop Unda Maris, and the relative scarcity of organbuilding techniques that created the Schnitger instruments in the first place. The organbuilding methods of the old craftspeople forces one to think with the hands and not just the eyes. There is knowledge locked up in the old working methods that can only be gained by what can be called a process of reconstruction, and as opposed to copying. Practical, hands-on experience with the materials and working methods of the old craftsmen forces one to think with the hands and not just the eyes. There is knowledge locked up in the old working methods that can never be understood by just looking at an old object. By gaining practical experience in building every part of an organ according to historical techniques, one can test methods and develop solutions that inform restoration decisions with a degree of authority, all before risking any damage to priceless, original material.

The restoration has already benefited from the reconstruction in the methods used to make the keyboards and the pedalboard. A further study will result in the reconstruction of the missing Vox Humana stop, which will be coordinated by GOArt. These endeavors are the product of a collaboration involving a number of scholars, organbuilders, craftsmen, scientists, and students from Lithuania, Sweden, and the United States, all engaged in an invaluable study of historical techniques and crafts. In the same way that the replica is necessary to secure the success of the restoration, the restoration process is absolutely necessary to guarantee the quality of the new organ for the Eastman School. The expert leadership for the Eastman project includes the working team at GOArt, the Lithuanian organbuilder Rimantas Gucys and his restoration team in Vilnius, and five American organbuilders, who comprise a reference group for the new organ. These American builders include Martin Pasi, Steve Dieck, Paul Fritts, Bruce Fowkes, and George Taylor.

The new organ is already being built in Göteborg and will be installed in Rochester in the fall of 2008. A conference was held in Vilnius in May of 2005 and featured a number of dignitaries (including the mayors of Vilnius, Rochester, and Göteborg), a seminar on recreating historical brass material for reed pipes, and fundraising concerts by Harald Vogel, Hans Davidson, David Higgs, and William Porter. Funds for the restoration will be administered by The Vilnius Old Town Renewal Agency (OTRA), in coordination with GOArt.

For more information, or to inquire about making a donation to the restoration effort in Vilnius, please contact Paul Peeters at paul@goart.musik.se. For more information about the Eastman Rochester Organ Initiative (EROI), or to inquire about making a donation to the Craighead-Saunders Organ, please contact Hans Davidsson at h davidsson@esm.rochester.edu, or see http://www.rochester.edu/EROI/.

Joel Speerstra is a member of the GOArt staff, where he directs the clavichord research program. Widely known as an organist and clavichordist, he has taught on the faculties of the Eastman School of Music and Eastern Michigan University.

NOTES
1. The Eastman Rochester Organ Initiative (EROI) is a ten-year plan to assemble a collection of new and historic organs in Rochester, New York. Aside from the Casparini project, plans already in progress include the restoration of the ninety-two rank E.M. Skinner organ from 1921 in Eastman’s Kilbourn Hall, and the restoration of a fifteen-stop Neapolitan organ from the 1770s, which is to be installed in the Fountain Court of the University of Rochester Memorial Art Gallery.
2. Possibly for Dulcian 16’.
3. The console was also changed to conform to nineteenth-century dimensions—the pedalboard, for example, was rebuilt and set farther into the organ case to facilitate the use of heels.
A Short History and Checklist of G-Compass Organs in North America

BY JOHN L. SPELLER

From around 1650 to 1850, standard organ keyboards in Britain and other English-speaking areas had GG rather than C as the lowest note. There were, in practice, several variations upon the design of the bass octaves of G-compass keyboards, depending on how many extra notes the purchasers of pipe organs were willing to fund. Some organs included all five notes from GG to low C: GG, GG#, AA, AA#, and BB. GG#, however, is a note that was very rarely called for, so many instruments—perhaps even the majority of them—omitted GG#

Walond's willingness to fund. Some organs included all five extra notes the purchasers of pipe organs were normally play low C# played M instead. A third variation was known as the short-octave keyboard, and had only two extra notes: GG and AA, omitting low C#, which was hardly ever needed. On a short-octave keyboard there was one additional natural key for GG to the left of low C, but the key that would normally play low C# played AA instead.

A good example of this is the anonymous organ at the Old Cathedral in St. Louis, Missouri, which is described in a newspaper account as having facade pipes that were twenty-two feet long. Around the beginning of the nineteenth century, however, Anglo-American organbuilding entered a period of rapid change and development. Initially people began to experiment with longer rather than shorter compasses. The organbuilder John Ward of York built a new instrument for York Minster in 1821–1823 that had keyboards going down to FF, while John Smith of Bristol (in collaboration with Dr. Edward Hodges) went even further and built several organs with keyboards down to sixteen-foot C. The first seven bars of this movement have octaves in the left hand, with the exception of bar four, where instead of an octave, there is just a tenor C# with no corresponding note an octave below. Yet this diminished seventh chord in bar four is the climax of the entire passage. There is a repeat in bar forty-three, where another low C# is similarly omitted on a diminished seventh chord. Why did Walond leave out a note on the chords he most wished to emphasize? The answer is simple. He was writing this piece for an organ with a short-octave keyboard on which there was no low C#.

While some were extending the compass of organ keyboards from GG down to FF and sixteen-foot C, others were moving in the opposite direction, i.e., toward the so-called German compass with eight-foot C as the lowest manual key. It was this movement that was ultimately to triumph. Since the lowest pipes in an organ are always the most expensive, the supporters of the German compass had economics on their side, if nothing else. They also had an ally in Felix Mendelssohn, the glittering star of the 1830s organ world and a close friend of Prince Albert and Queen Victoria. Mendelssohn and others who wanted to play the great organ works of Johann Sebastian Bach needed to have a pedalboard of twenty-seven notes from C to d, a quality found in few English organs at the time. Many English organs were devoid of pedals altogether, or they had an octave or so of truncated toe pedals, and playing most of the organ works of Bach on these instruments was quite out of the question. A proper German pedalboard became a must for organs in fashionable churches. There is no reason (apart from the expense, of course) why a German pedalboard could not have been made to run from GG up to at least d, but with the exception of Christ Church Spitalfields in London (1837), none of them seem to have done so.

In some cases, G-compass organs were built with C-compass pedalboards, and under the circumstances this might have been thought a sensible compromise. In many other cases, however, G-compass organs had pedalboards that ran from GG only up to tenor G, often not even extending that far. Nonetheless, the merits of the
Walter Holtkamp’s experimental organ with G-compass manual keyboard, C-compass pedalboard, and divided stops, photographed in the Holtkamp shop in 1933

longer G-compass seem not to have mattered once German compass enthusiasts like the pugnacious Dr. Henry Gauntlett got the bit between their teeth. The G-compass was doomed, and from around 1850 most new organs in Britain and North America were built with the German C compass.

The last great exponent of the G-compass in Victorian England was Samuel Sebastian Wesley (1810–1876), although even he was forced to make compromises. Wesley is generally considered the inventor of the radiating and concave pedalboard, but none of these was ever built with a G-compass.7 His own organ at Gloucester Cathedral as rebuilt by Willis in 1847 was very much a mongrel, with Great Organ to sixteen-foot C, Choir Organ to GG, and Swell Organ to eight-foot C. Wesley was the consultant for the celebrated 1855 Willis organ at St. George's Hall in Liverpool, where the compromise was to build G-compass manuals and C-compass pedals. Poor Dr. Wesley was ridiculed in the press for having the G compass at all. The organist Lyndon Smith wrote a particularly vicious attack on Wesley's Liverpool design in The Mercury in 1855, in which he claimed:

I have the authority of the builder who had the management of the Leeds Parish Church organ at the time Dr. Wesley officiated there, to state that the dust on the half-dozen lowest keys on the GG manuals remained undisturbed for months, clearly proving that those parts of the keyboards were almost altogether in disuse as regards the fingers.8

The impact of this statement is perhaps diminished by the fact that “the half-dozen lowest keys” would have included low C, a key that Dr. Wesley must surely have used quite frequently. Nevertheless, the writing was on the wall for Wesley's G compass, and the Willis organ in St. George's Hall proved to be the last important G-compass organ built in England. A number of Wesley's own compositions, including the original version of the ever-popular Choral Song, do call for a G-compass organ. Choral Song has mostly been played in arrangements for C-compass organ, but one does lose some of the richness in the bass of the original by making the compromises necessary to fit it to the C compass.

It is tragic that in the interests of so-called modernization, organbuilders frequently converted G-compass organs to C-compass instruments, even when there was no particular reason for doing so. Thus it is most unfortunate that the Richard M. Ferris organ at the Round Lake Auditorium was converted from G compass to C compass in the late nineteenth century. Even as it exists, the Round Lake organ is a national treasure, but how much more so would it be if it had retained its original compass? It is thus very gratifying when an enlightened rebuilder has seen fit to retain the G compass. A good example of this is the 1837 Henry Erben organ at St. Paul's Episcopal Church, Woodville, Mississippi. This instrument was built as a single-manual G-compass organ, but when Henry Pilcher's sons of Louisville, Kentucky, added the Swell and Pedal organs in 1885, they wisely saw fit to retain the original G-compass Great. Former OHS President Roy Redman gave the instrument a sympathetic restoration in 1981.9

Great: GG, AA-5', 58 notes
Open Diapason (to C) 8' 54 wood and metal
Stop'd Diapason 8' 58 wood and metal
Dulciana 8' 37 wood and metal
Principal 4' 58 metal
Flute 37, from tenor F, metal
Fifteenth 2' 58 metal
Cornet III 111, from tenor F, metal
Trumpet 8' 37, from tenor F, metal
Swell: C–D', 54 notes, enclosed
Stop'd Diapason 8'

Viol de Gamba 8'
Principal 4'
Flute 4'
Fifteenth 54 wood and metal

Pedal: C–G, 20 notes
Bourdon 16'

Manual Coupler (Swell to Great)
Great Machine Stop (withdraws all but the 8-foot flues and the 4-foot Flute)
Hitch-down swell ped
Tremolo (affects entire organ)

It will be noticed that in practice it was only necessary for a few of the stops on G-compass organs to run all the way to the bottom of the keyboard; stops like the Flute and Trumpet were often treated as solo stops and rarely required in the left hand, and usually extended down to only middle C or tenor G or F. Furthermore, it was common during the nineteenth century to have shared basses for the unison stops whatever the compass of the organ. In actuality, therefore, this G-compass organ only has twelve more pipes than it would have had if it had indeed been a C-compass organ.

In some cases there is a virtue in limiting the compass of some stops on a one-manual G-compass organ, since this can help to create some of the versatility of a two-manual organ. A charming example is the 1837 Henry Erben organ at St. John's Episcopal Church, Highgate Falls, Vermont. This is a tiny instrument:

Manual: GG, AA–f3, 58 notes, enclosed
Stop'd Diapason 8'
Principal 4'
Trumpet (from c) 8'

Pedal: GG, AA–G#, 13 notes
Pull-down

Hitch-down swell pedal

The instrument would have been much more limited if it were not for the possibility of playing solos on the Trumpet on the top half of the keyboard, accompanied by the Stop'd Diapason in the left hand. For the same reason, the Great mixture on old English organs was often divided into Sesquialtra [sic] Bass and Cornet Treble, so that the top half of the stop (or in the case of Walond's Opus 2, No. 3, the bottom half of the stop) might be used for solo purposes. Before around 1750, most English organs had a keyboard that divided at c'/c#, but after 1750 the divide generally was between b and c'. Examples of voluntaries designed for both positions of the break can be found. For example, among John Stanley's Cornet Voluntaries, Opus 6, No. 2, and Opus 7, Nos. 1 and 3 can be played on (and were doubtless intended for) a single-manual organ with the divide between b and c'. Opus 6, No. 3 can be played on (and was doubtless intended for) a single-manual organ with the divide set at c' and c#. John Stanley was in much demand as a recitalist, and he must have tailored his compositions to the resources of the particular instruments at hand. It was the custom of the time to improvise during church services, so he
would not normally have had occasion to write
down any compositions to play on his own organ
at the Temple Church. An exception to this is
Stanley's Opus 6, No. 4, which is clearly intend­
ed for the tenor F French Horn on the Swell of
the Temple Church organ.

The majority of organs being built in North
America today are eclectic instruments designed
to play a wide repertoire, although a number of
organs also continue to be built on historic prin­
ciples, particularly in academic institutions. This
situation is probably as it should be, although the
fact that nearly all of the organs being built today
are C-compass instruments means that there is
quite a bit of the old English repertoire that can­
not receive an authentic performance. For this
reason it is desirable to know exactly where pre­
1900 organs with non-C-compasses are still to be
found in North America. Unless indicated other­
wise, all of the organs listed below have GG as
their lowest manual key. Organs whose original
G-compass has been subsequently altered have
not been listed. Corrections or additions to this
list are welcomed. 12

Canada
1790 England & Son, 1/5, Cathedral of the
Holy Trinity (Anglican), Quebec City,
Quebec

California
1845 George Stevens, 1/6, Unitarian
Universalist Church, Stockton

Connecticut
1823 Thomas Hall, 1/7, Trinity Episcopal
Church, Milton
1827 Thomas Appleton, 2/17, Second
Congregational Church (U.C.C.), Middle
Haddam
c.1835 Henry Erben, 1/4, Wadsworth
Athenaeum, Hartford
1836 Denis Smith, 1/4, Hampton
Congregational Church (U.C.C.), Hampton
c.1840 Anonymous, 1/4, John Tarrant
Hitchcock Museum, Riverton
1849 Simmons & McIntyre, 1/5, Christ
Episcopal Church, Tashua

District of Columbia
1761 John Snetzler, 1/6, short octave,
Smithsonian Institution
1811/13 Jacob Hilbus, 1/9, Smithsonian
Institution
1844 Thomas Appleton, 1/8, Smithsonian
Institution (currently in storage)

Florida
1777 Jonas Ley, 1/4, collection of Richard
John, Coral Gables
1837 Hill & Davison, 1/5, Florida State
University, Tallahassee

Georgia
1848 Henry Erben, 1/5, Grace-Calvary
Episcopal Church, Clarksville

Illinois
1838 Henry Erben, 1/6, Grace Episcopal
Church, Galena

Indiana
1845 Henry Erben, with later, anonymous
modifications, 1/5, St. Patrick's Roman
Catholic Church, Lagro

Maine
1835 Anonymous, 2/18, Congregational
Church (U.C.C.), Calais
1847 E. & G.G. Hook, 1/9, Community
Church (Universalist), Stockton Springs
1848 George Stevens, 2/20, First
Congregational Church (U.C.C.), Belfast
1848 Henry Erben, 1/8, Turner Village
Church, Turner
1849 George Stevens, 2/11, Alfred
Congregational Church (U.C.C.), Alfred

Maryland
1819 by Jacob Hilbus (possibly using parts of
a late eighteenth-century English organ),
1/6, F compass, St. John's Episcopal
Church, Broad Creek

Massachusetts
1762 John Snetzler, 1/9, Congregational
Church (U.C.C.), South Dennis
c.1800 George Astor, 1/3, F compass, Old
State House, Boston
1804 William Gray, 1/10, Christ Episcopal
Church, Cambridge
1827 George Hook, 1/7, Essex Institute, Salem
c.1830 Anonymous, attributed to Henry
Pratt, 1/5, Meeting House, Old
Sturbridge Village
c.1830 Anonymous, attributed to W.
Goodrich, 2/10, St. Stephen's Catholic
Church, Boston
1831 Thomas Appleton, 2/14 as enlarged by
E. & G.G. Hook in 1858, United
Methodist Church, Nantucket
1833 Franklin S. Whiting, 1/4, St. Paul's
Episcopal Church, Otis
c.1834 E. & G.G. Hook, 1/13, Berkley
Congregational Church, Berkley
1837 Peter Jewett, 1/7, Congregational
Church, Granville
1840 Thomas Appleton, 2/19, Brooks
Concert Hall, Holy Cross College,
Worcester
1842 E. & G.G. Hook, 2/13, First Parish
Unitarian-Universalist, Northfield
1846 E. & G.G. Hook, 2/12, private owner­ship, Methuen
1847 E. & G.G. Hook, 2/13, First Church of
Christ, Sandwich
1847 E. & G.G. Hook, 1/7, Athol Historical
Society, Athol
1847 George Stevens, 2/13, First Parish
Unitarian Church, Shirley Center
1850 George Stevens, 2/15, St. James Catholic
Church, West Groton
1852 George Stevens, 2/14, St. Andrew's
Episcopal Church, New Bedford

Mississippi
1837 Henry Erben, rebuilt by Pilcher in
1885, 2/16, St. Paul's Episcopal Church,
Woodville

New Hampshire
1830 Anonymous, 2/13, Congregational
Church (U.C.C.), Orfordville
1838 Richard Pike Morriss, 1/6, Seabrook
Historical Society, Seabrook
1846 E. & G. G. Hook Opus 71, 1/9, South
Parish Unitarian Church, Charlestown
1849 E. & G.G. Hook Opus 93, 2/24,
Congregational Church (U.C.C.), Hinsdale

New Jersey
1839 Henry Erben, 1/4, St. Luke's Episcopal
Church, Hope

New York
1772 Anonymous English, 1/5, Caroline
Church, Setauket
c.1820 Thomas Hall, 1/5, Belle Skinner Hall,
Vassar College, Poughkeepsie
1830 Thomas Appleton, 2/16, Metropolitan
Museum of Art, New York 13
1835 Henry Erben, 1/6, St. Paul's Episcopal
Church, Mount Vernon
c.1840 Henry Erben, 3/12, Reformed
Church, Katonah
c.1840 Anonymous, possibly Thomas
Appleton, rebuilt in 1850 by E. & G.G.
Hook, 2/21, St. Vincent de Paul Roman
Catholic Church, Rosiere
1843 Thomas Appleton, 1/7, Reformed
Church, Leeds
1844 Henry Erben (rebuild of an instrument
by T. Hall), 2/13, Chinese Presbyterian
Church, New York
1848 Augustus Backus, 1/3, Christ Episcopal
Church, Duanesburg
1850 Augustus Backus, 1/7, St. Peter's
Lutheran Church, Rhinebeck

North Carolina
1846 Henry Erben, 1/4, Christ Church,
Elizabeth City
Ohio
1844 George Stevens, 2/24, Plymouth Church, Shaker Heights

Oregon
1843 George Jardine, 1/5, Holy Cross Lutheran Church, Portland

Pennsylvania
c.1789 Samuel Green, 1/4, Peter Hall, Moravian College, Bethlehem (on loan from the Metropolitan Museum of Art)

c.1840 Anonymous, possibly George Stevens, 1/6, Wren Chapel, Philadelphia

Utah
1844 Mirrlees, 1/4, St. Mark's Episcopal Cathedral, Salt Lake City

Vermont
1833 Henry Erben, 1/10, Grace Episcopal Church, Sheldon

Virginia
c.1640 Anonymous, 1/4, C compass with AA in lieu of C#, St. Luke's Episcopal Church, Smithfield

Wisconsin
1825 Thomas Appleton, 1/3, private ownership, Green Bay

There have been some attempts to revive the G-compass organ, and it may come as a surprise to many that Walter Holtkamp, Sr., built new G-compass instruments three-quarters of a century ago. For the 1933 AGO Convention in Cleveland, Ohio, Holtkamp produced an experimental one-manual electro-pneumatic-action organ with a compass from GG to g¹ (sixty-one notes), with stops divided between b and c¹, and with a very striking art deco case.¹ Since quite a bit of the repertoire that can be played on a one-manual organ is old English music calling for a G-compass keyboard, there is a lot to be said for this type of instrument, and dividing the keyboard certainly adds considerably to the versatility of a small instrument such as this. Holtkamp also designed a number of G-compass positive organs, including the five-stop instrument with art deco case design from 1935 currently at the Cleveland Museum of Art.

In recent years there have been several new G-compass organs constructed in the United Kingdom and Canada. As long ago as 1968 Noel Mander built a G-compass organ for the Church of St. Michael Paternoster Royal in London. This church, which was designed by Christopher Wren, had been restored after extensive bomb damage in World War II, and it seemed appropriate to build the new organ in a historical style to match the early eighteenth-century church. More recently the English organbuilders William Drake and Goetze & Gwinn have constructed a number of G-compass instruments. The very elegant Drake organ in the Grosvenor Chapel, Mayfair, is probably the largest G-compass organ built since Willlis's instrument in St. George's Hall of 1855. Some G-compass organs built in modern times include:

Canada
1986 Goetze & Gwinn, 1/10, St. Andrew's-Wesley Church, Vancouver, British Columbia

United Kingdom
1968 Noel Mander, 1/8, Church of St. Michael Paternoster Royal, London

1979 Noel Mander, 3/21, A compass, Pembroke College, Cambridge

1992 William Drake, 2/8, John Wellington residence, Manor, Devon

1994 William Drake, 2/8, Alfred Champniss residence, Harrow-on-the-Hill, Middlesex

1994 Goetze & Gwinn, 2/16, St. Lawrence Whitchurch, Edgware, Middlesex

1995 Goetze & Gwinn, 3/30, Great and Choir with C compass, St. Helen's Bishopsgate, London

1998 Goetze & Gwinn, 1/7, Handel House Museum, London

2003 Goetze & Gwinn, 1/6, Leeds University Music Department

2003 William Drake, 2/13, Trinity College of Music, Greenwich

2004 William Drake, 1/7, St. Mary Magdalen's Church, Boddington, Gloucestershire

2004 William Drake, 3/25, St. Paul's Church, Deptford, London

In light of the apparent interest in Britain and Canada, it is curious that, so far as I am aware, not a single G-compass organ appears to have been built in the United States since Holtkamp's instruments of the 1930s.¹³ Organ compasses have never been set in stone, and there is nothing sacrosanct about the sixty-one-note C-compass keyboard so prevalent today. In the 1920s Midmer-Losh experimented with some eighty-eight-note keyboards, and Emerson Richards (in collaboration with the same builders) used a seventy-three-note keyboard and a couple of eighty-five-note keyboards at Atlantic City. Perhaps the time has come to consider a limited revival of the G-compass organ, at least for small instruments. This would expand the repertoire that could be played on the instrument, particularly with regard to English and American organ music written before 1850. Furthermore, most hymns can be played down an octave on a G-compass instrument, adding greatly to the richness and versatility of sounds that can be produced by an organ of limited size. What is most important to remember, however, is that the surviving G-compass organs from before c.1850 are an important resource for the authentic performance of old English and American organ music, and the few that remain should be jealously preserved.

Dr. John Speller has worked as an organbuilder for James R. McFarland & Co., Columbia Organ Works, and Quimby Pipe Organs. He is a frequent contributor to The Tracker and The Diapason.
NOTES

2. Similarities between this instrument and an organ by Christianus Smith from 1643 have been noted, but a definite attribution cannot be made at this time. See Barbara Owen, “A ‘Payer of Organs’ and a ‘Voyall,’” The Tracker, vol. 41, no. 2 (1997):4.

5. There had been precedents for this, such as St. Paul’s Cathedral in London as early as 1696. See Nicholas Thistlithwaite, The Making of the Victorian Organ (Cambridge: Cambridge University Press, 1990), 95, 120.

6. Henry Cephas Lincoln’s 1837 rebuild of the organ in Christ Church Spitalfields is thought to have had a pedalboard compass of GG to e', i.e., thirty-four notes. See Thistlithwaite, Victorian Organ, 99.

11. Walond, Ten Voluntaries, 8–10. Walond does not give directions as the whether the Sesquialtera was to be used alone or in combination with other stops. This voluntary is possibly a unique example of a piece for Sesquialtera bass, and is reminiscent of the French Tercet en taille effect.

12. I am indebted to Barbara Owen and Gregory Crowell for their help in compiling this list.

13. The Appleton organ in the Metropolitan Museum of Art was converted to C compass in the nineteenth century, but Mann & Trupiano restored the G compass when the organ was relocated to the museum. The instrument is meticulously maintained and is situated in an excellent acoustical environment.

15. Some continuo organs have been built with non-C compasses, however. For example, Schneider Pipe Organs, Inc., built its Opus 16 in 1986 with F [sic] as the lowest note.
obituaries

JANE FETHERLIN DOUGLASS died on 1 March 2005 in Dover, New Hampshire, following a brief illness. Loving wife, mother, grandmother, organist, harpsichordist, pianist, and skilled ensemble performer, she was born in Washington, Pennsylvania, and received the Bachelor of Music degree in organ from the Oberlin Conservatory in 1953. She taught piano in Oberlin and Durham-Chapel Hill, North Carolina, for over twenty-five years. Her expertise as a choral singer was developed under Robert Fountain in the Oberlin College Choir, and led to participation in numerous choirs and the Renaissance Singers at Stanford University.

The wife of Fenner Douglass, she will also be remembered as a valued assistant to her husband at the organ, both at the great Flentrop organ in the Duke Chapel, and in various cities in the United States and Europe. She was admired for her recent collaborative role in concerts introducing the new Taylor and Boody organ at Bower Chapel in Moorings Park, Naples, Florida. Because Fenner had broken some bones in a fall from that instrument, she herself took over as organist to illustrate his comments.

In addition to her musical talents, she excelled at sewing, needlework, cooking, and entertaining, and enjoyed taking long walks on the beaches of Cape Cod and Florida, as well as spending time with her grandchildren. She is survived by her husband of more than fifty-two years, her three children (Stephen Douglass, of Lake Forest, Illinois; Emily Pavlidis, of Lee, New Hampshire; and John Douglass, of Tucson, Arizona), and six grandchildren.

—David Boe

WALTER V. HAWKES died on 5 March 2005 at the age of eighty-nine, having been in failing health for some time. A native and descendant of one of the earliest settlers of Saugus, Massachusetts, he studied organ with George Faxon and E. Power Biggs at the Longy School in Cambridge, Massachusetts. It was during his tenure at the Union Church in Saugus that he met his wife of fifty-nine years, Beulah Kobel. Shortly after their marriage he moved with his family to Cleveland, where he worked for several years for the Holtkamp firm, eventually becoming foreman of the pipe shop, and also serving as organist of St. John's Episcopal Church. At Holtkamp's he met Charles Fisk, for whom he later worked as foreman and designer, after Fisk became a partner with Thomas Byers in the Andover Organ Company in Methuen, Massachusetts. Hawkes later spent several years as foreman for the Noack Organ Company of Georgetown, Massachusetts. During his time in Massachusetts he also served as the organist of churches in Methuen, Tewksbury, West Boxford, and Nashua, New Hampshire. Upon retiring he assisted his son Timothy, who had a small organ workshop next to the Hawkes's home in Merrimac, Massachusetts. He was a member of the AGO, the OHS, and the Albert Schweitzer Fellowship. In addition to his wife, Beulah, he is survived by his sons Timothy and Adam, his daughter Lydia, three grandchildren, and two great-grandchildren.
New! American Organ Music
DUDLEY RUCK: Concert Variations on "The Star Spangled Banner", op. 23
American Organ Society
Samuel John Swartz (1947-1994) recorded the fine 1928 E. M. Skinner 4-64 at innamual Presbyterian Church in Los Angeles in 1986 for a famous LP from Metotte. The Skinner and the late Dr. Swartz can be heard on either a superior DVD-Audio disc (must be played on a DVD-Audio compatible player) or on a conventional CD. Motette conventional CD-10901 $14.98, or DVD-Audio MOT-10903 $14.98.

NEW! 2-CDs for the Price of One
The Philadelphia Organbuilder
Patrick J. Murphy & Associates

cd = Fantasia and Fantazias
WELEY PARROTT, ORGANIST
St. Mary’s Cathedral Church (Episcopal), Philadelphia, Op. 28, 1999

HORACE ALDEN MILLER: Fantasia, MOZART: Adagio, Allegro, Adagio, K. 594
LLOYD WEBBER: Solemn Procession SOUVENIR: Fantasy, for Flute Stops
ARTHUR WILLS: Fanfare LS07: Fantasia & Fugue

New Volume!
Two John Brock Plays 3 Organs

Tennessee Organ Tour, Vol. 2

New for 2012!

New! 7-CDs of Organ Music

New! American Organ Music

NEW! At the Holtkamp, Syracuse University
Discoveries: Christopher Marks

In addition to his new recordings, Scheringer composed five short works for a concert series at Syracuse University and produced four new CDs.

New! American Organ Music

New! CD audio or Regular CD

NEW! Angelian-Skinner 5m-106 Rks

National Presbyterian

ADLER: Festive Proclamation
FRANCK: Choral No. 1 HANDEL: Concerto op. 4/4
ERICK EYVAZIAN: A Hymn for the Lost and the Living, WIDOR: Adagio & Toccata, Symphony 5

The Organ Historical Society

New! CDs of Organ Music

SCHERZINGER: Five Pieces for Solo Organ

New! American Organ Music

DUDLEY RUCK: Concert Variations on "The Star Spangled Banner", op. 23
American Organ Society
Samuel John Swartz (1947-1994) recorded the fine 1928 E. M. Skinner 4-64 at innamual Presbyterian Church in Los Angeles in 1986 for a famous LP from Metotte. The Skinner and the late Dr. Swartz can be heard on either a superior DVD-Audio disc (must be played on a DVD-Audio compatible player) or on a conventional CD. Motette conventional CD-10901 $14.98, or DVD-Audio MOT-10903 $14.98.

NEW! 2-CDs for the Price of One
The Philadelphia Organbuilder
Patrick J. Murphy & Associates

cd = Fantasia and Fantazias
WELEY PARROTT, ORGANIST
St. Mary’s Cathedral Church (Episcopal), Philadelphia, Op. 28, 1999

HORACE ALDEN MILLER: Fantasia, MOZART: Adagio, Allegro, Adagio, K. 594
LLOYD WEBBER: Solemn Procession SOUVENIR: Fantasy, for Flute Stops
ARTHUR WILLS: Fanfare LS07: Fantasia & Fugue

New Volume!
Two John Brock Plays 3 Organs

Tennessee Organ Tour, Vol. 2

New for 2012!

New! 7-CDs of Organ Music

New! American Organ Music

DUDLEY RUCK: Concert Variations on "The Star Spangled Banner", op. 23
American Organ Society
Samuel John Swartz (1947-1994) recorded the fine 1928 E. M. Skinner 4-64 at innamual Presbyterian Church in Los Angeles in 1986 for a famous LP from Metotte. The Skinner and the late Dr. Swartz can be heard on either a superior DVD-Audio disc (must be played on a DVD-Audio compatible player) or on a conventional CD. Motette conventional CD-10901 $14.98, or DVD-Audio MOT-10903 $14.98.

NEW! 2-CDs for the Price of One
The Philadelphia Organbuilder
Patrick J. Murphy & Associates

cd = Fantasia and Fantazias
WELEY PARROTT, ORGANIST
St. Mary’s Cathedral Church (Episcopal), Philadelphia, Op. 28, 1999

HORACE ALDEN MILLER: Fantasia, MOZART: Adagio, Allegro, Adagio, K. 594
LLOYD WEBBER: Solemn Procession SOUVENIR: Fantasy, for Flute Stops
ARTHUR WILLS: Fanfare LS07: Fantasia & Fugue

New Volume!
Two John Brock Plays 3 Organs

Tennessee Organ Tour, Vol. 2

New for 2012!

New! 7-CDs of Organ Music

New! American Organ Music

DUDLEY RUCK: Concert Variations on "The Star Spangled Banner", op. 23
American Organ Society
Samuel John Swartz (1947-1994) recorded the fine 1928 E. M. Skinner 4-64 at innamual Presbyterian Church in Los Angeles in 1986 for a famous LP from Metotte. The Skinner and the late Dr. Swartz can be heard on either a superior DVD-Audio disc (must be played on a DVD-Audio compatible player) or on a conventional CD. Motette conventional CD-10901 $14.98, or DVD-Audio MOT-10903 $14.98.

NEW! 2-CDs for the Price of One
The Philadelphia Organbuilder
Patrick J. Murphy & Associates

cd = Fantasia and Fantazias
WELEY PARROTT, ORGANIST
St. Mary’s Cathedral Church (Episcopal), Philadelphia, Op. 28, 1999

HORACE ALDEN MILLER: Fantasia, MOZART: Adagio, Allegro, Adagio, K. 594
LLOYD WEBBER: Solemn Procession SOUVENIR: Fantasy, for Flute Stops
ARTHUR WILLS: Fanfare LS07: Fantasia & Fugue

New Volume!
Two John Brock Plays 3 Organs

Tennessee Organ Tour, Vol. 2

New for 2012!

New! 7-CDs of Organ Music

New! American Organ Music

DUDLEY RUCK: Concert Variations on "The Star Spangled Banner", op. 23
American Organ Society
Samuel John Swartz (1947-1994) recorded the fine 1928 E. M. Skinner 4-64 at innamual Presbyterian Church in Los Angeles in 1986 for a famous LP from Metotte. The Skinner and the late Dr. Swartz can be heard on either a superior DVD-Audio disc (must be played on a DVD-Audio compatible player) or on a conventional CD. Motette conventional CD-10901 $14.98, or DVD-Audio MOT-10903 $14.98.
MADER FUND GRANTS

The Ruth and Clarence Mader Memorial Scholarship Fund is pleased to announce that Jonathan B. Hall and Scott M. Hyslop have been selected to receive research grants in 2005. Mader Fund grants range from $200 to $1000, and preference is given to projects leading to publications related to organs or organ music.

Both 2005 grants were awarded to assist in the completion of studies that are in advanced stages of preparation. Dr. Hall is completing a comprehensive biography of Calvin Hampton, and Scott Hyslop is preparing a book and compact disc on the life and work of Paul Manz.

Information about Ruth and Clarence Mader Memorial Scholarship Fund research grants may be obtained from the website www.maderfund.com, or from Dr. Orpha Ochse, Research Project Chair, 900 E. Harrison Ave., #C-38, Pomona, CA 91767 (e-mail address: ocochse@worldnet.att.net).
New Releases and Best Sellers

LANDMARK ORGANS PLAYED BY TOP MUSICIANS

JAV 153
Daniel Roth at Washington National Cathedral....$18.95

JAV 154
On A Sunday Afternoon

JAV 157
John Weaver at Madison Avenue 18.95

JAV 156
James Vivian at the Temple Church, London....$18.95

JAV 144
Gerre Hancock at Washington National Cathedral....$18.95

JAV 141
Ken Cowan at the Parish Church of St. Luke's....$18.95

JAV 138
Stephen Tharp at the Parish Church of St. Luke's....$18.95

JAV 124
Thomas Murray at Woolsey Hall, Yale University...$32.95

JAV 123
Elm Court – Player Organ – Automatic Rolls & Live Playing.....$32.95

JAV 149
Todd Wilson at Washington National Cathedral.....$18.95

JAV 142
Erik Suter at Washington National Cathedral.....$18.95

JAV 143
Ann Elise Smoot at Washington National Cathedral.....$18.95

JAV 147
Peter Conte at Washington National Cathedral.....$18.95

COMING SOON

JAV proudly offers you three new recordings of great Cavaillé-Coll organs in Paris – Widor’s Mass for choir and two organs from St. Sulpice; Stephen Tharp playing Dupré’s Stations of the Cross at St. Sulpice; and Eric Lebrun performing Mulet’s magnum opus, the Ésquisses Byzantines at St. Antoine de Quinze-Vingts.

Internet Orders: www.pipeorgancds.com

Order by US Mail: JAV Recordings, Inc., 43 Wellington Court, Brooklyn, NY 11230

Flat S&H of $1.99 on orders received by US mail and paid for by US check. NY State residents add 8 1/2% tax

JAV CDS ARE AVAILABLE BY MAIL ORDER FROM JAV RECORDINGS.
OUR CDS ARE NOT AVAILABLE IN ANY RECORD STORES OR ORGAN CD CATALOGS.
Organ Specifications

Bryn Mawr (USA) Presbyterian Church

Grand Orgue I. (C – c4)

<table>
<thead>
<tr>
<th>Tuba</th>
<th>16'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bourdon</td>
<td>16'</td>
</tr>
<tr>
<td>Montre</td>
<td>8'</td>
</tr>
<tr>
<td>Gambe</td>
<td>8'</td>
</tr>
<tr>
<td>Bourdon</td>
<td>8'</td>
</tr>
<tr>
<td>Prestant</td>
<td>4'</td>
</tr>
<tr>
<td>Flûte</td>
<td>4'</td>
</tr>
<tr>
<td>Quinte</td>
<td>2 1/3'</td>
</tr>
<tr>
<td>Doublette</td>
<td>2'</td>
</tr>
</tbody>
</table>

Positif (expr.) II. (C – c4)

<table>
<thead>
<tr>
<th>Tuba</th>
<th>16'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bourdon</td>
<td>8'</td>
</tr>
<tr>
<td>Montre</td>
<td>8'</td>
</tr>
<tr>
<td>Salicional</td>
<td>8'</td>
</tr>
<tr>
<td>Montre</td>
<td>8'</td>
</tr>
<tr>
<td>Bourdon</td>
<td>4'</td>
</tr>
<tr>
<td>Gambe</td>
<td>16'</td>
</tr>
<tr>
<td>Contrebass</td>
<td>32'</td>
</tr>
<tr>
<td>Voix celeste</td>
<td>8'</td>
</tr>
<tr>
<td>Flûte</td>
<td>8'</td>
</tr>
<tr>
<td>Cor de Nuit</td>
<td>8'</td>
</tr>
<tr>
<td>Principal</td>
<td>4'</td>
</tr>
<tr>
<td>Flûte oct.</td>
<td>4'</td>
</tr>
<tr>
<td>Nazard</td>
<td>2 2/3'</td>
</tr>
<tr>
<td>Quarte de N.</td>
<td>2'</td>
</tr>
<tr>
<td>Tierce</td>
<td>1 3/4'</td>
</tr>
<tr>
<td>Larigot</td>
<td>1 1/5'</td>
</tr>
<tr>
<td>Plein Jeu</td>
<td>1 1/3'</td>
</tr>
<tr>
<td>C di Bassetto</td>
<td>16'</td>
</tr>
<tr>
<td>Trompette</td>
<td>8'</td>
</tr>
<tr>
<td>Trompette</td>
<td>8'</td>
</tr>
<tr>
<td>Cymbale</td>
<td>1'</td>
</tr>
<tr>
<td>Cornet</td>
<td>8'</td>
</tr>
<tr>
<td>Bombard</td>
<td>16'</td>
</tr>
<tr>
<td>Trompete</td>
<td>8'</td>
</tr>
</tbody>
</table>

Récit (C – c4)

<table>
<thead>
<tr>
<th>Tuba</th>
<th>16'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gambe</td>
<td>8'</td>
</tr>
<tr>
<td>Voix celeste</td>
<td>8'</td>
</tr>
<tr>
<td>Flûte</td>
<td>8'</td>
</tr>
<tr>
<td>Cor de Nuit</td>
<td>8'</td>
</tr>
<tr>
<td>Principal</td>
<td>4'</td>
</tr>
<tr>
<td>Flûte oct.</td>
<td>4'</td>
</tr>
<tr>
<td>Nazard</td>
<td>2 2/3'</td>
</tr>
<tr>
<td>Octavin</td>
<td>2'</td>
</tr>
<tr>
<td>Cornet</td>
<td>8'</td>
</tr>
<tr>
<td>Plein Jeu</td>
<td>1 1/3'</td>
</tr>
<tr>
<td>Bombarde</td>
<td>16'</td>
</tr>
<tr>
<td>Trompette</td>
<td>8'</td>
</tr>
<tr>
<td>Hautbois</td>
<td>8'</td>
</tr>
<tr>
<td>Voix humaine</td>
<td>8'</td>
</tr>
<tr>
<td>Clairon</td>
<td>4'</td>
</tr>
</tbody>
</table>

Pédale (C – g1)

<table>
<thead>
<tr>
<th>Tuba</th>
<th>32'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soubasse</td>
<td>16'</td>
</tr>
<tr>
<td>Contrebass</td>
<td>16'</td>
</tr>
<tr>
<td>Soubasse</td>
<td>16'</td>
</tr>
<tr>
<td>Quinte</td>
<td>10 2/3'</td>
</tr>
<tr>
<td>Violoncelle</td>
<td>8'</td>
</tr>
<tr>
<td>Flûte</td>
<td>8'</td>
</tr>
<tr>
<td>Flûte</td>
<td>4'</td>
</tr>
<tr>
<td>Contrebass</td>
<td>16'</td>
</tr>
<tr>
<td>Bombarde</td>
<td>16'</td>
</tr>
<tr>
<td>Basson</td>
<td>16'</td>
</tr>
<tr>
<td>Trompette</td>
<td>8'</td>
</tr>
</tbody>
</table>

Couplers

Mech.: II/I 8', III/I 8', III/II 8', I/P 8', II/P 8', III/P 8'

El.: I 4', I 16', I I 4', II 16', III 4', III 16', I/P 4', II/P 4', III/P 4', Alt. couple

Comb. System: 1000 generals, + 3 inserts each, x 16 user, ID Card Sequencer, General Cancel, Division Cancel

Special: Zimbelstern, Sostenuto, Pedal divide, Rieger Tuning System, MIDI